Skip to main content

Advertisement

Log in

Development of ultrasound-assisted dispersive liquid–liquid microextraction–large volume injection–gas chromatography–tandem mass spectrometry method for determination of pyrethroid metabolites in brain of cypermethrin-treated rats

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

3-Phenoxybenzoic acid (3-PBA) and 4-hydroxy-3-phenoxybenzoic acid (OH-PBA) are the two common metabolites for most pyrethroid insecticides. A rapid, sensitive, and eco-friendly method has been developed based on ultrasound-assisted dispersive liquid–liquid microextraction (DLLME) coupled to large volume injection–gas chromatography–tandem mass spectrometry for the simultaneous determination of pyrethroid metabolites in rat brain treated with cypermethrin (CYP). Brain samples were homogenized in methanol (disperser solvent) followed by derivatization with methyl chloroformate (MCF) and extraction using DLLME. Factors that influence the extraction and derivatization efficiency such as type and volume of extraction and disperser solvent, sonication time, pH, ionic strength, and volumes of MCF and pyridine were optimized. Under optimized conditions, the limits of detection were 1 and 4 ng/g for 3-PBA and OH-PBA, respectively. Mean recoveries of pyrethroid metabolites in rat brain were in the range of 83–95 %. The developed method was successfully applied for determination of 3-PBA and OH-PBA in brain samples of CYP-treated rats. The developed method can be adopted for rapid and sensitive analysis of pyrethroid metabolites in toxicological and forensic laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3-PBA:

3-Phenoxybenzoic acid

ACFs:

Alkyl chloroformates

CB:

Chlorobenzene

CSIR-IITR:

Council of Industrial Research-Indian Institute of Toxicology Research

CYP:

Cypermethrin

DCM:

Dichloromethane

DLLME:

Dispersive liquid–liquid microextraction

ELISA:

Enzyme-linked immunosorbent assay

GC–ECD:

Gas chromatography–electron capture detection

GC–MS:

Gas chromatography–mass spectrometry

GC–MS/MS:

Gas chromatography–tandem mass spectrometry

HPLC:

High-performance liquid chromatography

LLE:

Liquid–liquid extraction

LOD:

Limit of detection

LOQ:

Limit of quantification

LVI:

Large volume injection

MCF:

Methyl chloroformate

NIST:

National Institute of Standards and Technology

OH-PBA:

4-Hydroxy-3-phenoxybenzoic acid

PFBBr:

Pentafluorobenzyl bromide

PTV–LVI:

Programmable temperature vaporization–large volume injection

PYRs:

Pyrethroids

RSD:

Relative standard deviation

SPE:

Solid-phase extraction

SPME:

Solid-phase microextraction

SRM:

Selected reaction monitoring

TCE:

Trichloroethylene

UA:

Ultrasound-assisted

References

  1. Feo ML, Eljarrat E, Barcelo D (2010) Determination of pyrethroid insecticides in environmental samples. Trends Anal Chem 29:692–706

    Article  CAS  Google Scholar 

  2. Lin CH, Yan CT, Kumar PV, Li HP, Jen JF (2011) Determination of pyrethroid metabolites in human urine using liquid phase microextraction coupled in-syringe derivatization followed by gas chromatography/electron capture detection. Anal Bioanal Chem 401:927–937

    Article  CAS  PubMed  Google Scholar 

  3. Grand RL, Dulaurent S, Gaulier JM, Marcoux FS, Moesh C, Lachatre G (2012) Simultaneous determination of five synthetic pyrethroid metabolites in urine by liquid chromatography–tandem mass spectrometry: application to 39 persons without known exposure to pyrethroids. Toxicol Lett 210:248–253

    Article  PubMed  Google Scholar 

  4. Shrivastava A, Peshin SS, Kaleekal T, Gupta SK (2005) An epidemiological study of poisoning cases to the National Poison Information Centre, All India Institute of Medical Sciences, New Delhi. Hum Exp Toxicol 24:6279–6285

    Google Scholar 

  5. Ch SR, Venkateswarlu V, Surender T, Eddleston M, Buckley NA (2005) Pesticide poisoning in south India: opportunities for prevention and improved medical management. Trop Med Int Health 6:581–588

    Google Scholar 

  6. Mudiam MKR, Jain R, Mourya SK, Khan HA, Bandyopadhyay S, Murthy RC (2012) Low density solvent based dispersive liquid–liquid microextraction with gas chromatography-electron capture detection for the determination of cypermethrin in tissue and blood of cypermethrin treated rats. J Chromatogr B 895–896:65–70

    Article  Google Scholar 

  7. Mishra S, Sharma CB (1997) Metabolism and bioaccumulation of fenvalerate and its metabolites in rat organs. Biomed Chromatogr 11:50–53

    Article  Google Scholar 

  8. Marei AEM, Ruzo LO, Casida JE (1982) Analysis and persistence of permethrin, cypermethrin, deltamethrin, and fenvalerate in the fat and brain of treated rats. J Agric Food Chem 30:558–562

    Article  CAS  PubMed  Google Scholar 

  9. Barr DB, Olsson AO, Wong LY, Udunka S, Baker SE, Whitehead RD, Magsumbol MS, Williams BL, Needham LL (2010) Urinary concentration of metabolites of pyrethroid insecticides in the general U.S. population: National Health and Nutrition Examination Survey 1999–2002. Environ Health Perspect 118:742–748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Maloney SE, Maule A, Smith AR (1988) Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate and fluvalinate. Appl Environ Microbiol 54:2874–2876

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Woolen BH, Marsh JR, Laird WJD, Lesser JE (1999) The metabolism of cypermethrin in man: differences in urinary metabolite profiles following oral and dermal administration. Xenobiotica 22:983–991

    Article  Google Scholar 

  12. Wang D, Kamijima M, Imai R, Suzuki T, Kameda Y, Asai K, Okamura A, Naito H, Ueyama J, Saito I, Nakajima T, Goto M, Shibata E, Kondo T, Takagi K, Takaji K, Wakusawa S (2007) Biological monitoring of pyrethroid exposure of pest control workers in Japan. J Occup Health 49:509–514

    Article  CAS  PubMed  Google Scholar 

  13. Aziz MH, Agrawal AK, Adhami VM, Shukla Y, Seth PK (2001) Neurodevelopmental consequences of gestational exposure (GD14–GD20) to low dose deltamethrin in rats. Neurosci Lett 300:161–165

    Article  CAS  PubMed  Google Scholar 

  14. Ding Y, White CA, Muralidhara S, Bruckner JV, Bartlett MG (2004) Determination of deltamethrin and its metabolite 3-phenoxybenzoic acid in male rat plasma by high-performance liquid chromatography. J Chromatogr B 810:221–227

    CAS  Google Scholar 

  15. Ahn KC, Gee SJ, Kim HJ, Aronov PA, Vega H, Krieger RI, Hammock BD (2011) Immunochemical analysis of 3-phenoxybenzoic acid, a biomarker of forestry worker exposure to pyrethroid insecticides. Anal Bioanal Chem 401:1285–1293

    Article  CAS  PubMed  Google Scholar 

  16. Hardt J (2001) Ibuprofen interference in the determination of 3-phenoxybenzoic acid in urine. Fresenius J Anal Chem 371:787–790

    Article  CAS  PubMed  Google Scholar 

  17. Husek P (1998) Chloroformates in gas chromatography as general purpose derivatizing agents. J Chromatogr B 717:57–91

    Article  CAS  Google Scholar 

  18. Sams C, Jones K (2011) Biological monitoring for exposure to deltamethrin: a human oral dosing study and background levels in the UK general population. Toxicol Lett 213:35–38

    Article  PubMed  Google Scholar 

  19. Mudiam MKR, Jain R, Dua VK, Singh AK, Sharma VP, Murthy RC (2011) Application of ethyl chloroformate derivatization for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol-A in water and milk samples. Anal Bional Chem 401:1695–1701

    Article  Google Scholar 

  20. Pusvaskiene E, Januskevic B, Prichodko A, Vickackaite V (2009) Simultaneous derivatization and dispersive liquid–liquid microextraction for fatty acids GC determination in water. Chromatographia 69:271–276

    Article  CAS  Google Scholar 

  21. Leggio A, Belsito EL, Marco RD, Liguori A, Siciliano C, Spinella M (2012) Simultaneous extraction and derivatization of amino acids and free fatty acids in meat products. J Chromatogr A 1241:96–102

    Article  CAS  PubMed  Google Scholar 

  22. Luo S, Fang L, Wang X, Liu H, Ouynag G, Lan C, Luan T (2010) Determination of octylphenol and nonylphenol sample using simultaneous derivatization and dispersive liquid–liquid microextraction by gas chromatography–mass spectrometry. J Chromatogr A 1217:6762–6768

    Article  CAS  PubMed  Google Scholar 

  23. Yonamine M, Tawil N, Moreau RLDM, Silva OA (2003) Solid-phase micro-extraction-gas chromatography–mass spectrometry and headspace-gas chromatography of tetrahydrocannabinol, amphetamine, methamphetamine, cocaine and ethanol in saliva samples. J Chromatogr B 789:73–78

    Article  CAS  Google Scholar 

  24. Saito T, Miura N, Namara A, Oikawa H, Miyazaki S, Nakamoto A, Inokuchi S (2012) Mixed-mode C-C18 monolithic spin-column extraction and GC–MS for simultaneous assay of organophosphorous compounds, glyphosate, and glufosinate in human serum and urine. Forensic Toxicol 30:1–10

    Article  CAS  Google Scholar 

  25. Namera A, Saito T, Miyazaki S, Ohta S, Oikawa H, Torikoshi A, Shiraishi H, Nagao M (2013) Sequential extraction of amphetamines, opiates, and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid from a limited volume of urine using a monolithic silica spin column coupled with gas chromatography–mass spectrometry. Forensic Toxicol 31:312–321

    Article  CAS  Google Scholar 

  26. Hayashi D, Kumazawa T, Hasegawa C, Lee X-P, Marumo A, Uchigasaki S, Kawamura M, Sato K (2012) A simple and reliable method for quantifying plasma concentrations of tetracyclic antidepressants using monolithic silica solid-phase extraction tips. Forensic Toxicol 30:98–105

    Article  CAS  Google Scholar 

  27. Menck RA, de Oliveira CDR, de Lima DS, Goes LE, Leyton V, Pasqualucci CA, Munoz DR, Yonamine M (2013) Hollow fiber-liquid phase microextraction of barbiturates in liver samples. Forensic Toxicol 31:31–36

    Article  CAS  Google Scholar 

  28. Rezaee M, Assadi Y, Hosseini MRM, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116:1–9

    Article  CAS  PubMed  Google Scholar 

  29. Cortada C, Vidal L, Canals A (2011) Determination of geosmin and 2-methylisoborneol in water and wine samples by ultrasound-assisted dispersive liquid–liquid microextraction coupled to gas chromatography–mass spectrometry. J Chromatogr A 1218:17–22

    Article  CAS  PubMed  Google Scholar 

  30. Mudiam MKR, Chauhan A, Jain R, Ch R, Fatima G, Malhotra E, Murthy RC (2012) Development, validation and comparison of two microextraction technique for the rapid and sensitive determination of pregabalin in urine and pharmaceutical formulations after ethyl chloroformate derivatization followed by gas chromatography–mass spectrometric analysis. J Pharm Biomed Anal 70:310–319

    Article  CAS  PubMed  Google Scholar 

  31. Rezaee M, Yamini Y, Faraji M (2010) Evaluation of dispersive liquid–liquid microextraction method. J Chromatogr A 1217:2342–2357

    Article  CAS  PubMed  Google Scholar 

  32. Shafer TJ, Meyer DA, Crofton KM (2005) Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Prespect 113:123–136

    Article  CAS  Google Scholar 

  33. Singh A, Yadav S, Shrivastava V, Kumar R, Singh D, Sethumadhavan R, Parmar D (2013) Imprinting of cerebral and hepatic cytochrome P450 in rat offsprings exposed to low dose of cypermethrin. Mol Neurobiol. doi:10.1007/s12035-013-8419-5

    Google Scholar 

  34. Peters FT, Drummer OH, Musshoff F (2007) Validation of new methods. Forensic Sci Int 165:216

    Article  CAS  PubMed  Google Scholar 

  35. Kvitvang HFN, Andreassen T, Adam T, Boas SGV, Bruhein P (2011) Highly sensitive GC/MS/MS method for quantitation of amino and nonamino organic acids. Anal Chem 83:2705–2711

    Article  CAS  PubMed  Google Scholar 

  36. Husek P (1990) Fast esterification of fatty acids with alkyl chloroformates. J High Res Chrom 13:633–638

    Article  CAS  Google Scholar 

  37. Zampolli MG, Basaglia G, Dondi F, Sternberg R, Szopa C, Pietrogrande MC (2007) Gas chromatography–mass spectrometry analysis of amino acid enantiomers as methyl chloroformate derivatives: application to space analysis. J Chromatogr A 1150:162–172

    Article  CAS  PubMed  Google Scholar 

  38. Wu Q, Li Z, Wu C, Wang C, Wang Z (2010) Application of ultrasound-assisted emulsification microextraction for the determination of triazine herbicides in soil samples by high performance liquid chromatography. Microchim Acta 170:59–65

    Article  CAS  Google Scholar 

  39. Cartiser N, Bevalot F, Le Meur C, Gaillard Y, Malicier D, Hubert N, Guitton J (2011) Gas chromatography–tandem mass spectrometry assay for the quantification of four benzodiazepines and citalopram in eleven postmortem rabbit fluid and tissues, with application to animal and human samples. J Chroamtogr B 879:2909–2918

    Article  CAS  Google Scholar 

  40. Zaitsu K, Miyagawa H, Sakamoto Y, Matsuta S, Tsuboi K, Nishioka H, Katai M, Sato T, Tatsuno M, Tsuchihashi H, Suzuki K, Ishii A (2013) Mass spectrometric differentiation of the isomers of mono-methoxyethylamphetamines and mono-methoxydimethylamphetamines by GC–EI–MS–MS. Forensic Toxicol 31:292–300

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. K. C. Gupta, Director, CSIR-IITR, for support in providing the necessary facilities to carry out this work. RJ is thankful to UGC for providing a research fellowship to carry out this research work. AS is thankful to CSIR for providing a research fellowship. All authors are indebted to CSIR, New Delhi, for financial support through the INDEPTH (BSC0111) scheme.

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohana Krishna Reddy Mudiam.

Additional information

M. K. R. Mudiam and R. Jain contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudiam, M.K.R., Jain, R., Singh, A. et al. Development of ultrasound-assisted dispersive liquid–liquid microextraction–large volume injection–gas chromatography–tandem mass spectrometry method for determination of pyrethroid metabolites in brain of cypermethrin-treated rats. Forensic Toxicol 32, 19–29 (2014). https://doi.org/10.1007/s11419-013-0196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-013-0196-3

Keywords

Navigation