Skip to main content

Advertisement

Log in

Anti-amyloidgenic and neurotrophic effects of tetrahydroxystilbene glucoside on a chronic mitochondrial dysfunction rat model induced by sodium azide

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is an irreversible neurodegenerative brain disorder with complex pathogenesis. Emerging evidence indicates that there is a tight relationship between mitochondrial dysfunction and β-amyloid (Aβ) formation. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is one of the main active components extracted from Polygonum multiflorum. The purpose of the present study was to investigate the effects of TSG on Aβ production and neurotrophins in the brains of rats by using a mitochondrial dysfunction rat model induced by sodium azide (NaN3), an inhibitor of mitochondrial cytochrome c oxidase (COX). NaN3 was administered to rats by continuous subcutaneous infusion for 28 days via implanted osmotic minipumps to establish the animal model. TSG was intragastrically administered starting 24 h after the operation. The activity of mitochondrial COX was measured by a biochemical method. The content of Aβ 1-42 was detected by ELISA. The expression of neurotrophic factors was determined by Western blot and immunohistochemistry. The results showed that NaN3 infusion for 28 days induced a decrease in mitochondrial COX activity, an increase in Aβ 1-42 content and the expression of amyloidogenic β-amyloid precursor protein (APP), beta-site APP cleaving enzyme 1 (BACE1) and presenilin 1 (PS1), and a decline in the expression of neurotrophins in the hippocampus of rats. Intragastrical administration of TSG elevated mitochondrial COX activity, decreased Aβ 1-42 content and the expression of APP, BACE1 and PS1, and enhanced the expression of nerve growth factor, brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) in the hippocampus of NaN3-infused rats. These findings suggest that TSG may be beneficial in blocking or slowing the progression of AD by enhancing mitochondrial function, decreasing Aβ production and increasing neurotrophic factors at some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Godyn J, Jonczyk J, Panek D, Malawska B (2016) Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep 68:127–138. https://doi.org/10.1016/j.pharep.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  2. Blass JP, Sheu RK, Gibson GE (2000) Inherent abnormalities in energy metabolism in Alzheimer disease. Interaction with cerebrovascular compromise. Ann N Y Acad Sci 903:204–221

    Article  CAS  Google Scholar 

  3. Leuner K, Schutt T, Kurz C, Eckert SH, Schiller C, Occhipinti A, Mai S, Jendrach M, Eckert GP, Kruse SE, Palmiter RD, Brandt U, Drose S, Wittig I, Willem M, Haass C, Reichert AS, Muller WE (2012) Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxid Redox Signal 16:1421–1433. https://doi.org/10.1089/ars.2011.4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Velliquette RA, O’Connor T, Vassar R (2005) Energy inhibition elevates beta-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer’s disease pathogenesis. J Neurosci 25:10874–10883. https://doi.org/10.1523/JNEUROSCI.2350-05.2005

    Article  CAS  PubMed  Google Scholar 

  5. Hashimoto M, Rockenstein E, Crews L, Masliah E (2003) Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular Med 4:21–36. https://doi.org/10.1385/NMM

    Article  CAS  PubMed  Google Scholar 

  6. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449. https://doi.org/10.1093/hmg/ddl066

    Article  CAS  PubMed  Google Scholar 

  7. Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI (2015) The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis 6:331–341. https://doi.org/10.14336/AD.2015.0825

    Article  PubMed  PubMed Central  Google Scholar 

  8. Allen SJ, Watson JJ, Dawbarn D (2011) The neurotrophins and their role in Alzheimer’s disease. Curr Neuropharmacol 9:559–573. https://doi.org/10.2174/157015911798376190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Markham A, Bains R, Franklin P, Spedding M (2014) Changes in mitochondrial function are pivotal in neurodegenerative and psychiatric disorders: how important is BDNF? Br J Pharmacol 171:2206–2229. https://doi.org/10.1111/bph.12531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang R, Tang Y, Feng B, Ye C, Fang L, Zhang L, Li L (2007) Changes in hippocampal synapses and learning-memory abilities in age-increasing rats and effects of tetrahydroxystilbene glucoside in aged rats. Neuroscience 149:739–746. https://doi.org/10.1016/j.neuroscience.2007.07.065

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, Xing Y, Ye C, Ai H, Wei H, Li L (2006) Learning-memory deficit with aging in APP transgenic mice of Alzheimer’s disease and intervention by using tetrahydroxystilbene glucoside. Behav Brain Res 173:246–254. https://doi.org/10.1016/j.bbr.2006.06.034

    Article  CAS  PubMed  Google Scholar 

  12. Bennett MC, Mlady GW, Kwon YH, Rose GM (1996) Chronic in vivo sodium azide infusion induces selective and stable inhibition of cytochrome c oxidase. J Neurochem 66:2606–2611

    Article  CAS  Google Scholar 

  13. Hoyer A, Bardenheuer HJ, Martin E, Plaschke K (2005) Amyloid precursor protein (APP) and its derivatives change after cellular energy depletion. An in vitro-study. J Neural Transm (Vienna) 112:239–253. https://doi.org/10.1007/s00702-004-0176-1

    Article  CAS  Google Scholar 

  14. Szabados T, Dul C, Majtenyi K, Hargitai J, Penzes Z, Urbanics R (2004) A chronic Alzheimer’s model evoked by mitochondrial poison sodium azide for pharmacological investigations. Behav Brain Res 154:31–40. https://doi.org/10.1016/j.bbr.2004.01.016

    Article  CAS  PubMed  Google Scholar 

  15. Bai HB, Wang JF, Long J (2004) Study on optimizing extraction process of root of Polygonum multiflorum. Zhongguo Zhong Yao Za Zhi 29:219–221

    PubMed  Google Scholar 

  16. Racay P, Tatarkova Z, Drgova A, Kaplan P, Dobrota D (2009) Ischemia-reperfusion induces inhibition of mitochondrial protein synthesis and cytochrome c oxidase activity in rat hippocampus. Physiol Res 58:127–138

    CAS  PubMed  Google Scholar 

  17. Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20:4515–4529. https://doi.org/10.1093/hmg/ddr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garcia-Escudero V, Martin-Maestro P, Perry G, Avila J (2013) Deconstructing mitochondrial dysfunction in Alzheimer disease. Oxid Med Cell Longev 2013:162152. https://doi.org/10.1155/2013/162152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berndt JD, Callaway NL, Gonzalez-Lima F (2001) Effects of chronic sodium azide on brain and muscle cytochrome oxidase activity: a potential model to investigate environmental contributions to neurodegenerative diseases. J Toxicol Environ Health A 63:67–77. https://doi.org/10.1080/152873901750128380

    Article  CAS  PubMed  Google Scholar 

  20. Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101

    Article  CAS  Google Scholar 

  21. Lemasters JJ, Qian T, Bradham CA, Brenner DA, Cascio WE, Trost LC, Nishimura Y, Nieminen AL, Herman B (1999) Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J Bioenerg Biomembr 31:305–319

    Article  CAS  Google Scholar 

  22. Volbracht C, Leist M, Nicotera P (1999) ATP controls neuronal apoptosis triggered by microtubule breakdown or potassium deprivation. Mol Med 5:477–489

    Article  CAS  Google Scholar 

  23. Partridge RS, Monroe SM, Parks JK, Johnson K, Parker WJ, Eaton GR, Eaton SS (1994) Spin trapping of azidyl and hydroxyl radicals in azide-inhibited rat brain submitochondrial particles. Arch Biochem Biophys 310:210–217. https://doi.org/10.1006/abbi.1994.1159

    Article  CAS  PubMed  Google Scholar 

  24. Luques L, Shoham S, Weinstock M (2007) Chronic brain cytochrome oxidase inhibition selectively alters hippocampal cholinergic innervation and impairs memory: prevention by ladostigil. Exp Neurol 206:209–219. https://doi.org/10.1016/j.expneurol.2007.04.007

    Article  CAS  PubMed  Google Scholar 

  25. Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA 105:19318–19323. https://doi.org/10.1073/pnas.0804871105

    Article  PubMed  Google Scholar 

  26. Nhan HS, Chiang K, Koo EH (2015) The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta Neuropathol 129:1–19. https://doi.org/10.1007/s00401-014-1347-2

    Article  CAS  PubMed  Google Scholar 

  27. Gabuzda D, Busciglio J, Chen LB, Matsudaira P, Yankner BA (1994) Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J Biol Chem 269:13623–13628

    CAS  PubMed  Google Scholar 

  28. Spuch C, Ortolano S, Navarro C (2012) New insights in the amyloid-Beta interaction with mitochondria. J Aging Res 2012:324968. https://doi.org/10.1155/2012/324968

    Article  PubMed  PubMed Central  Google Scholar 

  29. Venugopal C, Demos CM, Rao KS, Pappolla MA, Sambamurti K (2008) Beta-secretase: structure, function, and evolution. CNS Neurol Disord: Drug Targets 7:278–294

    Article  CAS  Google Scholar 

  30. Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev 2013:316523. https://doi.org/10.1155/2013/316523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Holsinger RM, McLean CA, Beyreuther K, Masters CL, Evin G (2002) Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Ann Neurol 51:783–786. https://doi.org/10.1002/ana.10208

    Article  CAS  PubMed  Google Scholar 

  32. Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R, Beach T, Sue L, Sabbagh M, Cai H, Wong P, Price D, Shen Y (2004) Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer’s disease patients. Proc Natl Acad Sci USA 101:3632–3637. https://doi.org/10.1073/pnas.0205689101

    Article  CAS  PubMed  Google Scholar 

  33. Xiong K, Cai H, Luo XG, Struble RG, Clough RW, Yan XX (2007) Mitochondrial respiratory inhibition and oxidative stress elevate beta-secretase (BACE1) proteins and activity in vivo in the rat retina. Exp Brain Res 181:435–446. https://doi.org/10.1007/s00221-007-0943-y

    Article  CAS  PubMed  Google Scholar 

  34. Oda A, Tamaoka A, Araki W (2010) Oxidative stress up-regulates presenilin 1 in lipid rafts in neuronal cells. J Neurosci Res 88:1137–1145. https://doi.org/10.1002/jnr.22271

    Article  CAS  PubMed  Google Scholar 

  35. Tamagno E, Bardini P, Obbili A, Vitali A, Borghi R, Zaccheo D, Pronzato MA, Danni O, Smith MA, Perry G, Tabaton M (2002) Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis 10:279–288

    Article  CAS  Google Scholar 

  36. Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S (2008) New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 59:201–220. https://doi.org/10.1016/j.brainresrev.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  37. Lee JG, Shin BS, You YS, Kim JE, Yoon SW, Jeon DW, Baek JH, Park SW, Kim YH (2009) Decreased serum brain-derived neurotrophic factor levels in elderly korean with dementia. Psychiatry Investig 6:299–305. https://doi.org/10.4306/pi.2009.6.4.299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Calissano P, Matrone C, Amadoro G (2010) Nerve growth factor as a paradigm of neurotrophins related to Alzheimer’s disease. Dev Neurobiol 70:372–383. https://doi.org/10.1002/dneu.20759

    Article  CAS  PubMed  Google Scholar 

  39. Arancibia S, Silhol M, Mouliere F, Meffre J, Hollinger I, Maurice T, Tapia-Arancibia L (2008) Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol Dis 31:316–326. https://doi.org/10.1016/j.nbd.2008.05.012

    Article  CAS  PubMed  Google Scholar 

  40. Kim HK, Mendonca KM, Howson PA, Brotchie JM, Andreazza AC (2015) The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells–The potential of JNX1001 as a therapeutic agent. Eur J Pharmacol 764:379–384. https://doi.org/10.1016/j.ejphar.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  41. Markham A, Cameron I, Bains R, Franklin P, Kiss JP, Schwendimann L, Gressens P, Spedding M (2012) Brain-derived neurotrophic factor-mediated effects on mitochondrial respiratory coupling and neuroprotection share the same molecular signalling pathways. Eur J Neurosci 35:366–374. https://doi.org/10.1111/j.1460-9568.2011.07965.x

    Article  PubMed  Google Scholar 

  42. Burkhalter J, Fiumelli H, Allaman I, Chatton JY, Martin JL (2003) Brain-derived neurotrophic factor stimulates energy metabolism in developing cortical neurons. J Neurosci 23:8212–8220

    Article  CAS  Google Scholar 

  43. West MJ, Gundersen HJ (1990) Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 296:1–22. https://doi.org/10.1002/cne.902960102

    Article  CAS  PubMed  Google Scholar 

  44. Stephan H, Manolescu J (1980) Comparative investigations on hippocampus in insectivores and primates. Z Mikrosk Anat Forsch 94:1025–1050

    CAS  PubMed  Google Scholar 

  45. Padurariu M, Ciobica A, Mavroudis I, Fotiou D, Baloyannis S (2012) Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer’s disease patients. Psychiatr Danub 24:152–158

    PubMed  Google Scholar 

  46. Kerchner GA, Hess CP, Hammond-Rosenbluth KE, Xu D, Rabinovici GD, Kelley DA, Vigneron DB, Nelson SJ, Miller BL (2010) Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI. Neurology 75:1381–1387. https://doi.org/10.1212/WNL.0b013e3181f736a1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6:2950–2967

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 81273498, 81341087, 81473373); the National Science and Technology Major Project of China (No. 2015ZX09101-016); the Capital Health Research and Development Foundation (Nos. 2011-1001-04, 2016-2-1033); the Beijing New Medical Discipline Grant (XK100270569); and the Beijing High-level Health and Technical Personal Plan (Nos. 2011-1-7, 2014-2-014). We thank Ya-li Li and Hou-xi Ai for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest associated with this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Ry., Zhang, L., Zhang, L. et al. Anti-amyloidgenic and neurotrophic effects of tetrahydroxystilbene glucoside on a chronic mitochondrial dysfunction rat model induced by sodium azide. J Nat Med 72, 596–606 (2018). https://doi.org/10.1007/s11418-018-1177-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-018-1177-y

Keywords

Navigation