Skip to main content

Advertisement

Log in

14-Deoxy-11,12-didehydroandrographolide inhibits proliferation and induces GSH-dependent cell death of human promonocytic leukemic cells

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

14-Deoxy-11,12-didehydroandrographolide (AND2), an analogue of andrographolide, showed more potent cytotoxicity against human promonocytic leukemia (THP-1) cells than adherent cancer cell lines. In this study AND2 was isolated from the plant Andrographis paniculata and it was characterized. The antiproliferative effect of AND2 on both adherent (PC-3 and MDAMB) and non-adherent (THP-1 and Jurkat) cancer cell lines was evaluated by MTT assay. The effect of intracellular reduced glutathione (GSH) on AND2-induced cytotoxicity was studied by conducting cell viability assays on GSH-pretreated cells. The effect of AND2 on the redox status of THP-1 cells was determined by analyzing the endogenous reduced GSH content. Apoptosis induction was confirmed by DNA laddering assay and Western blot analysis using anti-caspase-3 protein antibody. AND2 showed antiproliferative action on both THP-1 and Jurkat cancer cell lines with low IC50 values. Cytotoxicity of AND2 was reversed by GSH pretreatment. AND2 treatment decreased the GSH content by 19.76 % (p < 0.001) in the THP-1 cancer cell line and reduced the cell clumping between the THP-1 cells. Expression of procaspase-3 varied in THP-1 cells during the time course of AND2 treatment. Procaspase-3 expression reached a maximum in treated cells at 32 h and was markedly reduced at 48 h but no procaspase-3 cleavage was observed. The obtained results suggest that AND2 is more effective against leukemia cells. AND2 induced a redox-mediated cell death in THP-1 cells. As AND2 temporarily increased the procaspase-3 expression during treatment, this study encourages the preclinical testing of AND2 against promonocytic leukemia cells in combination with small molecules that directly activate procaspase-3 to caspase-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chao W-W, Lin B-F (2010) Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin Med 5(1):1–15. doi:10.1186/1749-8546-5-17

    Google Scholar 

  2. Geethangili M, Rao YK, Fang SH, Tzeng YM (2008) Cytotoxic constituents from Andrographis paniculata induce cell cycle arrest in Jurkat cells. Phytother Res 22(10):1336–1341. doi:10.1002/ptr.2493

    Article  CAS  PubMed  Google Scholar 

  3. Sheeja K, Kuttan G (2007) Activation of cytotoxic T lymphocyte responses and attenuation of tumor growth in vivo by Andrographis paniculata extract and andrographolide. Immunopharmacol Immunotoxicol 29(1):81–93

    CAS  PubMed  Google Scholar 

  4. Puri A, Saxena R, Saxena R, Saxena K, Srivastava V, Tandon J (1993) Immunostimulant agents from Andrographis paniculata. J Nat Prod 56(7):995–999

    Article  CAS  PubMed  Google Scholar 

  5. Lee K-C, Chang H-H, Chung Y-H, Lee T-Y (2011) Andrographolide acts as an anti-inflammatory agent in LPS-stimulated RAW264.7 macrophages by inhibiting STAT3-mediated suppression of the NF-κB pathway. J Ethnopharmacol 135(3):678–684. doi:10.1016/j.jep.2011.03.068

    Article  CAS  PubMed  Google Scholar 

  6. Chen J-X, Xue H-J, Ye W-C, Fang B-H, Liu Y-H, Yuan S-H, Yu P, Wang Y-Q (2009) Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biol Pharm Bull 32(8):1385–1391

    Article  CAS  PubMed  Google Scholar 

  7. Matsuda T, Kuroyanagi M, Sugiyama S, Umehara K, Ueno A, Nishi K (1994) Cell differentiation inducing diterpenes from Andrographis paniculata Nees. Chem Pharm Bull (Tokyo) 42:1216–1225

    Article  CAS  Google Scholar 

  8. Woo AY, Waye MM, Tsui SK, Yeung ST, Cheng CH (2008) Andrographolide up-regulates cellular-reduced glutathione level and protects cardiomyocytes against hypoxia/reoxygenation injury. J Pharmacol Exp Ther 325(1):226–235

    Article  CAS  PubMed  Google Scholar 

  9. Ye J-F, Zhu H, Zhou Z-F, Xiong R-B, Wang X-W, Su L-X, Luo B-D (2011) Protective mechanism of andrographolide against carbon tetrachloride-induced acute liver injury in mice. Biol Pharm Bull 34(11):1666–1670

    Article  CAS  PubMed  Google Scholar 

  10. Ji L, Shen K, Liu J, Chen Y, Liu T, Wang Z (2009) Intracellular glutathione regulates andrographolide-induced cytotoxicity on hepatoma Hep3B cells. Redox Rep 14(4):176–184. doi:10.1179/135100009x466122

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Cheung H-Y, Zhang Z, Chan GK, Fong W-F (2007) Andrographolide induces cell cycle arrest at G2/M phase and cell death in HepG2 cells via alteration of reactive oxygen species. Eur J Pharmacol 568(1):31–44

    Article  CAS  PubMed  Google Scholar 

  12. Chao H-P, Kuo C-D, Chiu J-H, Fu S-L (2010) Andrographolide exhibits anti-invasive activity against colon cancer cells via inhibition of MMP2 activity. Planta Med 76(16):1827–1833

    Article  CAS  PubMed  Google Scholar 

  13. Pfisterer PH, Rollinger JM, Schyschka L, Rudy A, Vollmar AM, Stuppner H (2010) Neoandrographolide from Andrographis paniculata as a potential natural chemosensitizer. Planta Med 76:1698–1700. doi:10.1055/s-0030-1249876

    Article  CAS  PubMed  Google Scholar 

  14. Cheung H, Cheung S, Li J, Cheung C, Lai W, Fong W, Leung F (2005) Andrographolide isolated from Andrographis paniculata induces cell cycle arrest and mitochondrial mediated apoptosis in human leukemic HL-60 cells. Planta Med 71:1106–1111

    Article  CAS  PubMed  Google Scholar 

  15. Guan S-P, Kong L-R, Cheng C, Lim JCW, Wong WSF (2011) Protective role of 14-deoxy-11,12-didehydroandrographolide, a non-cytotoxic analogue of andrographolide, in allergic airway inflammation. J Nat Prod 74(6):1484–1490. doi:10.1021/np2002572

    Article  CAS  PubMed  Google Scholar 

  16. Tan ML, Kuroyanagi M, Sulaiman SF, Najimudin N, Tengku Muhammad TS (2005) Cytotoxic activities of major diterpenoid constituents of Andrographis paniculata in a panel of human tumor cell lines. Pharm Biol 43(6):501–508. doi:10.1080/13880200500220557

    Article  CAS  Google Scholar 

  17. Thisoda P, Rangkadilok N, Pholphana N, Worasuttayangkurn L, Ruchirawat S, Satayavivad J (2006) Inhibitory effect of Andrographis paniculata extract and its active diterpenoids on platelet aggregation. Eur J Pharmacol 553(1):39–45

    Article  CAS  PubMed  Google Scholar 

  18. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  19. Wataha JC, Lewis JB, Lockwood PE, Rakich DR (2000) Effect of dental metal ions on glutathione levels in THP-1 human monocytes. J Oral Rehabil 27(6):508–516

    Article  CAS  PubMed  Google Scholar 

  20. Gong J, Traganos F, Darzynkiewicz Z (1994) A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem 218(2):314–319

    Article  CAS  PubMed  Google Scholar 

  21. Syng-ai C, Kumari AL, Khar A (2004) Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol Cancer Ther 3(9):1101–1108

    CAS  PubMed  Google Scholar 

  22. Franco R, Panayiotidis MI, Cidlowski JA (2007) Glutathione depletion is necessary for apoptosis in lymphoid cells independent of reactive oxygen species formation. J Biol Chem 282(42):30452–30465. doi:10.1074/jbc.M703091200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tsan MF, White JE, Maheshwari JG, Bremner TA, Sacco J (2000) Resveratrol induces Fas signalling-independent apoptosis in THP-1 human monocytic leukaemia cells. Br J Haematol 109(2):405–412

    Article  CAS  PubMed  Google Scholar 

  24. Popovich DG, Kitts DD (2002) Structure–function relationship exists for ginsenosides in reducing cell proliferation and inducing apoptosis in the human leukemia (THP-1) cell line. Arch Biochem Biophys 406(1):1–8. doi:10.1016/S0003-9861(02)00398-3

    Article  CAS  PubMed  Google Scholar 

  25. Ghibelli L, Fanelli C, Rotilio G, Lafavia E, Coppola S, Colussi C, Civitareale P, Ciriolo MR (1998) Rescue of cells from apoptosis by inhibition of active GSH extrusion. FASEB J 12(6):479–486

    CAS  PubMed  Google Scholar 

  26. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212

    Article  CAS  PubMed  Google Scholar 

  27. Flohg L (1978) Glutathione peroxidase: fact and fiction. In: Fitzsimons DW (ed) Ciba Foundation symposium 65 – Oxygen free radicals and tissue damage. Wiley Online Library, Weinheim, pp 95–122

  28. Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267

    Article  CAS  PubMed  Google Scholar 

  29. McKay TR, Bell S, Tenev T, Stoll V, Lopes R, Lemoine NR, McNeish IA (2003) Procaspase-3 expression in ovarian carcinoma cells increases survivin transcription which can be countered with a dominant-negative mutant, survivin T34A; a combination gene therapy strategy. Oncogene 22(23):3539–3547. doi:10.1038/sj.onc.1206417

    Article  CAS  PubMed  Google Scholar 

  30. Putt KS, Chen GW, Pearson JM, Sandhorst JS, Hoagland MS, Kwon J-T, Hwang S-K, Jin H, Churchwell MI, Cho M-H (2006) Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat Chem Biol 2(10):543–550

    Article  CAS  PubMed  Google Scholar 

  31. Micheau O, Hammann A, Solary E, Dimanche-Boitrel M-T (1999) STAT-1-independent upregulation of FADD and procaspase-3 and-8 in cancer cells treated with cytotoxic drugs. Biochem Biophys Res Commun 256(3):603–607

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Sibabratha Mukhopadhyay, CSIR-Indian Institute of Chemical Biology, for the advices on NMR spectrum assignments. We acknowledge the Council for Scientific and Industrial Research (CSIR) for senior research fellowship, File No. 9/43(0163) 2KI3-EMRI. We acknowledge the Department of Biotechnology, India and University of Calicut for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Madassery.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2046 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghavan, R., Cheriyamundath, S. & Madassery, J. 14-Deoxy-11,12-didehydroandrographolide inhibits proliferation and induces GSH-dependent cell death of human promonocytic leukemic cells. J Nat Med 68, 387–394 (2014). https://doi.org/10.1007/s11418-014-0815-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-014-0815-2

Keywords

Navigation