Skip to main content
Log in

Miroestrol, a phytoestrogen from Pueraria mirifica, improves the antioxidation state in the livers and uteri of β-naphthoflavone-treated mice

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Oxidative stress is involved in the progression of several diseases such as diabetes, hypertension, and age-related diseases. Miroestrol (MR) is a potent phytoestrogen from the tuberous root of Pueraria mirifica, a plant used in traditional Thai medicine that is claimed to have rejuvenating effects. In this study, the effects of MR on the antioxidation system, including anti-lipid peroxidation; on the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase; and on glutathione content in the livers and uteri of β-naphthoflavone (BNF)-treated mice were determined. BNF-treated mice are a model of procarcinogen-exposed mice. The results showed that MR improved the antioxidant activities of SOD and CAT in the livers and uteri of both normal and BNF-treated mice, while estradiol (E2) increased SOD activity in the uteri of normal mice and CAT activity in the livers of both normal and BNF-treated mice. In the liver, MR increased the levels of several forms of glutathione, whereas in the uteri E2 and MR reduced the level of lipid peroxidation by decreasing the level of malondialdehyde. Therefore, the use of MR as an alternative hormone replacement therapy might be beneficial due to its ability to improve antioxidation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BNF:

β-Naphthoflavone

CAT:

Catalase

E2:

Estradiol

GPx:

Glutathione peroxidase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

MR:

Miroestrol

SOD:

Superoxide dismutase

References

  1. Harman D (1992) Role of free radicals in aging and disease. Ann NY Acad Sci 673:126–141

    Article  PubMed  CAS  Google Scholar 

  2. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  3. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623

    Article  PubMed  CAS  Google Scholar 

  4. Sánchez-Pérez Y, Carrasco-Legleu C, García-Cuellar C, Pérez-Carreón J, Hernández-García S, Salcido-Neyoy M, Alemán-Lazarini L, Villa-Treviño S (2005) Oxidative stress in carcinogenesis. Correlation between lipid peroxidation and induction of preneoplastic lesions in rat hepatocarcinogenesis. Cancer Lett 217:25–32

    Article  PubMed  Google Scholar 

  5. Malaivijitnond S (2012) Medical applications of phytoestrogens from the Thai herb Pueraria mirifica. Front Med 6:8–21

    Article  PubMed  Google Scholar 

  6. Udomsuk L, Juengwatanatrakul T, Putalun W, Jarukamjorn K (2012) Bimodal action of miroestrol and deoxymiroestrol, phytoestrogens from Pueraria candollei var. mirifica, on hepatic CYP2B9 and CYP1A2 expressions and anti-lipid peroxidation in mice. Nutr Res 32:45–51

    Article  PubMed  CAS  Google Scholar 

  7. Jones HEH, Pope GS (1960) A study of the action of miroestrol and other oestrogens on reproductive tract of the immature female. J Endocrinol 20:229–235

    Article  PubMed  CAS  Google Scholar 

  8. Jones HEH, Pope GS (1961) A method for the isolation of miroestrol from Pueraria mirifica. J Endocrinol 22:303–312

    Article  PubMed  CAS  Google Scholar 

  9. Chansakaow S, Ishikawa T, Seki H, Sekine K, Okada M, Chaichantipyuth C (2000) Identification of deoxymiroestrol as the actual rejuvenating principle of “KwaoKeur” Pueraria mirifica. The known miroestrol may be an artifact. J Nat Prod 63:173–175

    Article  PubMed  CAS  Google Scholar 

  10. Cherdshewasart W, Sutjit W (2008) Correlation of antioxidant activity and major isoflavonoid contents of the phytoestrogen-rich Pueraria mirifica and Pueraria lobata tubers. Phytomedicine 15:38–43

    Article  PubMed  CAS  Google Scholar 

  11. Chatuphonprasert W, Udomsuk L, Monthakantirat O, Churikhit Y, Putalun W, Jarukamjorn K (2013) Effects of Pueraria mirifica and miroestrol on the antioxidation-related enzymes in ovariectomized mice. J Pharm Pharmacol 65:447–456

    Article  PubMed  CAS  Google Scholar 

  12. Chatuphonprasert W, Sangkawat T, Nemoto N, Jarukamjorn K (2011) Suppression of beta-naphthoflavone induced CYP1A expression and lipid-peroxidation by berberine. Fitoterapia 82:889–895

    Article  PubMed  CAS  Google Scholar 

  13. Pinto RE, Bartley W (1969) The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem J 112:109–115

    PubMed  CAS  Google Scholar 

  14. Limón-Pacheco J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674:137–147

    Article  PubMed  Google Scholar 

  15. Miquel J, Ramírez-Boscá A, Ramírez-Bosca JV, Alperi JD (2006) Menopause: a review on the role of oxygen stress and favorable effects of dietary antioxidants. Arch Gerontol Geriatr 42:289–306

    Article  PubMed  CAS  Google Scholar 

  16. Cervellati C, Bonaccorsi G, Cremonini E, Bergamini CM, Patella A, Castaldini C, Ferrazzini S, Capatti A, Picarelli V, Pansini FS, Massari L (2012) Bone mass density selectively correlates with serum markers of oxidative damage in post-menopausal women. Clin Chem Lab Med. doi:10.1515/cclm-2012-0095

    Google Scholar 

  17. Moorthy K, Sharma D, Basir SF, Baquer NZ (2005) Administration of estradiol and progesterone modulate the activities of antioxidant enzyme and aminotransferases in naturally menopausal rats. Exp Gerontol 40:295–302

    Article  PubMed  CAS  Google Scholar 

  18. Sugino N, Shimamura K, Takiguchi S, Tamura H, Ono M, Nakata M, Nakamura Y, Ogino K, Uda T, Kato H (1996) Changes in activity of superoxide dismutase in the human endometrium throughout the menstrual cycle and in early pregnancy. Human Reprod 11:1073–1078

    Article  CAS  Google Scholar 

  19. Kinalski M, Sledziewski A, Telejko B, Zarzycki W, Kinalska I (1999) Antioxidant therapy and streptozotocin-induced diabetes in pregnant rats. Acta Diabetol 36:113–117

    Article  PubMed  CAS  Google Scholar 

  20. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57:715S–724S

    PubMed  CAS  Google Scholar 

  21. Ruiz-Larrea MB, Leal AM, Liza M, Lacort M, de Groot H (1994) Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids 59:383–388

    Article  PubMed  CAS  Google Scholar 

  22. Kimura S, Gonzalez FJ, Nebert DW (1986) Tissue-specific expression of the mouse dioxin-inducible P1 450 and P3 450 genes: differential transcriptional activation and mRNA stability in liver and extrahepatic tissues. Mol Cell Biol 6:1471–1477

    PubMed  CAS  Google Scholar 

  23. Jarukamjorn K, Kondo S, Chatuphonprasert W, Sakuma T, Kawasaki Y, Nemoto N (2010) Gender-associated modulation of inducible CYP1A1 expression by andrographolide in mouse liver. Eur J Pharm Sci 39:394–401

    Article  PubMed  CAS  Google Scholar 

  24. Shimada T, Inoue K, Suzuki Y, Kawai T, Azuma E, Nakajima T, Shindo M, Kurose K, Sugie A, Yamagishi Y, Fujii-Kuriyama Y, Hashimoto M (2002) Arylhydrocarbon receptor-dependent induction of liver and lung cytochrome P450 1A1, 1A2, and 1B1 by polycyclic aromatic hydrocarbon and polychlorinated biphenyls in genetically engineered C57BL/6 J mice. Carcinogenesis 23:1199–1207

    Article  PubMed  CAS  Google Scholar 

  25. Hayashi H, Taniai E, Morita R, Yafune A, Suzuki K, Shibutani M, Mitsumori K (2012) Threshold dose of liver tumor promoting effect of β-naphthoflavone in rats. J Toxicol Sci 37:517–526

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

NJ expresses sincere thanks to the Royal Golden Jubilee Ph.D. program for the scholarship. The Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, National Research University-Khon Kaen University, Thailand, is gratefully acknowledged. Dr. Waraporn Putalun, Khon Kaen University, Thailand, is deeply acknowledged for her expertise in the extraction of MR from the tuberous roots of P. mirifica.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanokwan Jarukamjorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jearapong, N., Chatuphonprasert, W. & Jarukamjorn, K. Miroestrol, a phytoestrogen from Pueraria mirifica, improves the antioxidation state in the livers and uteri of β-naphthoflavone-treated mice. J Nat Med 68, 173–180 (2014). https://doi.org/10.1007/s11418-013-0788-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-013-0788-6

Keywords

Navigation