Skip to main content
Log in

Absorptive constituents and their metabolites in drug-containing urine samples from Wuzhishan miniature pigs orally administered with Buyang Huanwu decoction

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Buyang Huanwu decoction (BYHWD), a famous traditional Chinese medicine prescription for the treatment of cerebrovascular diseases, is composed of seven commonly used Chinese herbs—Astragali Radix, Angelicae Sinensis Radix, Paeoniae Radix Rubra, Chuanxiong Rhizoma, Carthami Flos, Persicae Semen and Pheretima. To determine the main absorptive constituents and the metabolites of BYHWD in vivo, urine samples from Wuzhishan (WZS) miniature pigs orally administered with BYHWD (13.6 g crude drugs/kg) were collected to investigate the characteristic compounds. By comparing the high-performance liquid chromatography of a drug-containing urine sample with that of a drug-free sample, 17 characteristic compounds were isolated from the methanol extract of a drug-containing urine sample by column chromatography. Their structures, including 11 isoflavanoids, 2 pterocarpanoids and 4 isoflavonoids, were identified by spectroscopic means. Of the 17 compounds, 8 (18) were new compounds with the following structures: 3S-7,3′,4′-trihydroxyisoflavan-3′-O-β-d-glucuronide (1), 3S-7,3′,4′-trihydroxyisoflavan-4′-O-β-d-glucuronide (2), 3S-7,2′,4′-trihydroxyisoflavan-2′-O-β-d-glucuronide (3), 3R-7,2′-dihydroxy-3′,4′-dimethoxyisoflavan-2′-O-β-d-glucuronide (4), 3R-7,2′-dihydroxy-3′,4′-dimethoxyisoflavan-2′-O-β-d-glucuronide-6″-methyl ester (5), 3R-7,2′-dihydroxy-3′,4′-dimethoxyisoflavan-7-O-β-d-glucuronide-6″-methyl ester (6), 3R-7,2′,3′-trihydroxy-4′-methoxyisoflavan-3′-O-β-d-glucuronide-6″-methyl ester (7), and 3S-7,4′,5′-trihydroxy-2′,3′-dimethoxyisoflavan-5′-O-β-d-glucuronide (8). Based on the possible relationship and metabolic pathways of the 17 compounds in vivo, 3R-7,2′-dihydroxy-3′,4′-dimethoxyisoflavan (isomucronulatol, 11), 6aR,11aR-3-hydroxy-9,10-dimethoxypterocarpan (methylnissolin, astrapterocarpan, 13), 7,3′-dihydroxy-4′-methoxyisoflavone (calycosin, 16) and 7-hydroxy-4′-methoxyisoflavone (formononetin, 17) were thought to be the most important absorptive original isoflavonoid constituents of BYHWD in vivo, which underwent reactions of glucuronidation, hydroxylation, demethylation and reduction. The other 13 compounds were deduced to be their metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cai G-X, Liu B-Y (2010) Effect of ultra-micronized Buyang Huanwu decoction on neurological function, quality of life, and serum vascular endothelial growth factor in patients convalescent from cerebral infarction. Chin Crit Care Med 22:591–594

    Google Scholar 

  2. Wu Y-S, Jiang L-P (1998) Clinical study on buyanghuanwu decoction to the metabolic imbalance of endothelin and calcitonin gene related peptide in patients with early cerebral infarction. Chin J Integr Tradit West Med 18:396–398

    CAS  Google Scholar 

  3. Zhang H, Liang M-J, Ma Z-X, Ye S-L (1995) Clinical study on effects of buyanghuanwu decoction on coronary heart disease. Chin J Integr Tradit West Med 15:213–215

    CAS  Google Scholar 

  4. Zha L-L, Shen Z-Y, Zhang P (1994) Clinical and experimental research of buyanghuanwu tang granule in treatment of ischemic apoplexy. Chin J Integr Tradit West Med 14:74–76, 67

    Google Scholar 

  5. Shen Q, Zheng Q-J (1993) Effect of photosensitized oxidation auto-hemotherapy with buyanghuanwu tang on sequela of apoplexy. Chin J Integr Tradit West Med 13:402–404, 387

    Google Scholar 

  6. Chu C, Qi L-W, Liu E-H, Li B, Gao W, Li P (2010) Radix Astragali (Astragalus): latest advancements and trends in chemistry, analysis, pharmacology and pharmacokinetics. Curr Org Chem 14:1792–1807

    Article  CAS  Google Scholar 

  7. Ran X, Ma L, Peng C, Zhang H, Qin L-P (2011) Ligusticum chuanxiong Hort: a review of chemistry and pharmacology. Pharm Biol 49:1180–1189

    Article  PubMed  CAS  Google Scholar 

  8. Liu X, Li W, Cai B (2010) Advances in research of chemical constituents and the pharmacological activities on cardio- and cerebro-vascular systems of Angelicae Sinensis Radix. J Nanjing TCM Univ 26:155–157

    Google Scholar 

  9. Ruan J-L, Zhao Z-X, Zeng Q-Z, Qian Z-M (2003) Recent advances in study of components and pharmacological roles of Radix Paeoniae Rubra. Chin Pharmacol Bull 19:965–970

    CAS  Google Scholar 

  10. Sarengaowa, Chen H-M, Quan S (2009) Summary of the research on chemical compositions and pharmacological activities of Mongolian drug Carthamus tinctorius L. J Inner Mongolia Univ Natl 24:333–336

    Google Scholar 

  11. Wang R-F, Fan L-G, Gao W-Y, Zhang J-Y (2010) Advances in research of chemical constituents and pharmacological activities of Persicae Semen. Drug Clin 25:426–429

    CAS  Google Scholar 

  12. Yang D, Cai S, Liu H, Guo X, Li C, Shang M, Wang X, Zhao Y (2006) On-line identification of the constituents of Buyang Huanwu decoction in pig serum using combined HPLC–DAD–MS techniques. J Chromatogr B 831:288–302

    Article  CAS  Google Scholar 

  13. Muthyala R-S, Ju Y-H, Sheng S, Williams L-D, Doerge D-R, Katzenellenbogen B-S, Helferich W-G, Katzenellenbogen J-A (2004) Equol, a natural estrogenic metabolite from soy isoflavones convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg Med Chem 12:1559–1567

    Article  PubMed  CAS  Google Scholar 

  14. Piccinelli A-L, Campo F-M, Cuesta-Rubio O, Marquez H-I, De Simone F, Rastrelli L (2005) Isoflavonoids isolated from Cuban Propolis. J Agric Food Chem 53:9010–9016

    Article  PubMed  CAS  Google Scholar 

  15. Luk K-C, Stern L, Weigele M, O’Brien R-A, Spirt N (1983) Isolation and identification of “diazepam-like” compounds from bovine urine. J Nat Prod 46:852–861

    Article  PubMed  CAS  Google Scholar 

  16. Chang Y-C, Nair M-G (1995) Metabolism of daidzein and genistein by intestinal bacteria. J Nat Prod 58:1892–1896

    Article  PubMed  CAS  Google Scholar 

  17. Liang G, Zhang T, Wang J, Chen B, Cheng K, Hu C (2005) X-ray single-crystal analysis of (−)-(S)-equol isolated from rat’s feces. Chem Biodivers 2:959–963

    Article  PubMed  CAS  Google Scholar 

  18. Setchell K-D-R, Brown N-M, Lydeking-Olsen E (2002) The clinical importance of the metabolite equol—a clue to the effectiveness of soy and its isoflavones. J Nutr 132:3577–3584

    PubMed  CAS  Google Scholar 

  19. He Z-Q, Findlay J-A (1991) Constituents of Astragalus membranaceus. J Nat Prod 54:810–815

    Article  CAS  Google Scholar 

  20. Subarnas A, Oshima Y, Hikino H (1991) Isoflavans and a pterocarpan from Astragalus mongholicus. Phytochemistry 30:2777–2780

    Article  CAS  Google Scholar 

  21. Zhao M, Duan J-A, Huang W-Z, Zhou R-H, Che Z-T (2002) Isoflavans and isoflavone from Astragalus hoantchy. J Chin Pharm Univ 33:274–276

    CAS  Google Scholar 

  22. Robeson D-J, Ingham J-L (1979) New pterocarpan phytoalexins from Lathyrus nissolia. Phytochemistry 18:1715–1717

    Article  CAS  Google Scholar 

  23. Spencer G-F, Jones B-E, Plattner R-D, Barnekow D-E, Brinen L-S, Clardy J (1991) A pterocarpan and two isoflavans from alfalfa. Phytochemistry 30:4147–4149

    Article  CAS  Google Scholar 

  24. Du X, Bai Y, Liang H, Wang Z, Zhao Y, Zhang Q, Huang L (2006) Solvent effect in 1H NMR spectra of 3′-hydroxy-4′-methoxy isoflavonoids from Astragalus membranaceus var. mongholicus. Magn Reson Chem 44:708–712

    Article  PubMed  CAS  Google Scholar 

  25. Herath H-M-T-B, Dassanayake R-S, Priyadarshani A-M-A, De Silva S, Wannigama G-P, Jamie J (1998) Isoflavonoids and a pterocarpan from Gliricidia sepium. Phytochemistry 47:117–119

    Article  CAS  Google Scholar 

  26. Kamnaing P, Fanso Free S-N-Y, Nkengfack A-E, Folefoc G, Fomum Z-T (1999) An isoflavan-quinone and a flavonol from Millettia laurentii. Phytochemistry 51:829–832

    Article  CAS  Google Scholar 

  27. Salem M-M, Werbovetz K-A (2006) Isoflavonoids and other compounds from Psorothamnus arborescens with antiprotozoal activities. J Nat Prod 69:43–49

    Article  PubMed  CAS  Google Scholar 

  28. Kobayashi M, Noguchi H, Sankawa U (1985) Formation of chalcones and isoflavones by callus culture of Glycyrrhiza uralensis with different production patterns. Chem Pharm Bull 33:3811–3816

    Article  CAS  Google Scholar 

  29. Heinonen S-M, Hoikkala A, Wahala K, Adlercreutz H (2003) Metabolism of the soy isoflavones daidzein, genistein and glycitein in human subjects. Identification of new metabolites having an intact isoflavonoid skeleton. J Steroid Biochem Mol Biol 87:285–299

    Article  PubMed  CAS  Google Scholar 

  30. Heinonen S-M, Wahala K, Adlercreutz H (2004) Identification of urinary metabolites of the red clover isoflavones formononetin and biochanin A in human subjects. J Agric Food Chem 52:6802–6809

    Article  PubMed  CAS  Google Scholar 

  31. Kulling S-E, Lehmann L, Metzler M (2002) Oxidative metabolism and genotoxic potential of major isoflavone phytoestrogens. J Chromatogr B 777:211–218

    Article  CAS  Google Scholar 

  32. Rufer C-E, Glatt H, Kulling S-E (2006) Structural elucidation of hydroxylated metabolites of the isoflavan equol by gas chromatography–mass spectrometry and high-performance liquid chromatography–mass spectrometry. Drug Metab Dispos 34:51–60

    Article  PubMed  Google Scholar 

  33. Ohkawara S, Okuma Y, Uehara T, Yamagishi T, Nomura Y (2005) Astrapterocarpan isolated from Astragalus membranaceus inhibits proliferation of vascular smooth muscle cells. Eur J Pharmacol 525:41–47

    Article  PubMed  CAS  Google Scholar 

  34. Lu J-F, Li C-X, Muteliefu G, Li T-F, Tu P-F, Yin J-J, Cai S-Q (2002) Effects of BYHW decoction and its effective constituents on the fluidity of the cell membrane in a stroke-modeled rat brain. J Chin Pharm Sci 11:132–136

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of P. R. China (Grant No. 30371721) and State Key Program of National Natural Science of the People’s Republic of China (Grant No. 30830120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Qing Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, DH., Ren, XL., Xu, F. et al. Absorptive constituents and their metabolites in drug-containing urine samples from Wuzhishan miniature pigs orally administered with Buyang Huanwu decoction. J Nat Med 68, 11–21 (2014). https://doi.org/10.1007/s11418-013-0756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-013-0756-1

Keywords

Navigation