Skip to main content
Log in

San-Huang-Xie-Xin-Tang protects cardiomyocytes against hypoxia/reoxygenation injury via inhibition of oxidative stress-induced apoptosis

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Oxidative stress has been widely implicated in the pathogenesis of hypoxia/reoxygenation (H/R) injury. San-Huang-Xie-Xin-Tang (SHXT), a widely used traditional Chinese medication, has been shown to possess antioxidant effects. Here, we investigated whether SHXT and its main component baicalin can attenuate oxidative stress induced by H/R injury. H9c2 rat ventricular cells were exposed to SHXT or baicalin followed by hypoxia for 24 h and/or reoxygenation for 8 h. Pretreatment with SHXT and baicalin both significantly prevented cell death and production of reactive oxygen species induced by hypoxia or H/R in H9c2 cardiomyoctes. In addition, SHXT and baicalin also inhibited hypoxia- or H/R-induced apoptosis, with associated decreased Bax protein, increased Bcl-2 protein, and decreased caspase-3 activity. Furthermore, we found that hypoxia and H/R decreased endothelial nitric oxide synthase (eNOS) expression and nitrite production, and these effects were counteracted by SHXT and baicalein. Finally, SHXT inhibited H/R-induced activation of p38 mitogen activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) phosphorylation in H9c2 rat ventricular cells. The present study demonstrates for the first time that SHXT can protect cardiomyocytes from H/R injury via inhibition of oxidative stress-induced apoptosis. These cardioprotective effects are possibly mediated through eNOS enhancement and p38 MAPK and JNK-dependent signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Takano H, Zou Y, Hasegawa H, Akazawa H, Nagai T, Komuro I (2003) Oxidative stress-induced signal transduction pathways in cardiac myocytes: involvement of ROS in heart diseases. Antioxid Redox Signal 5:789–794

    Article  PubMed  CAS  Google Scholar 

  2. Zhao ZQ (2004) Oxidative stress-elicited myocardial apoptosis during reperfusion. Curr Opin Pharmacol 4:159–165

    Article  PubMed  CAS  Google Scholar 

  3. Shih YT, Wu DC, Liu CM, Yang YC, Chen IJ, Lo YC (2007) San-Huang-Xie-Xin-Tang inhibits Helicobacter pylori-induced inflammation in human gastric epithelial AGS cells. J Ethnopharmacol 112:537–544

    Article  PubMed  Google Scholar 

  4. Lo YC, Lin YL, Yu KL, Lai YH, Wu YC, Ann LM, Chen IJ (2005) San-Huang-Xie-Xin-Tang attenuates inflammatory responses in lipopolysaccharide-exposed rat lungs. J Ethnopharmacol 101:68–74

    Article  PubMed  CAS  Google Scholar 

  5. Lo YC, Tsai PL, Huang YB, Shen KP, Tsai YH, Wu YC, Lai YH, Chen IJ (2005) San-Huang-Xie-Xin-Tang reduces lipopolysaccharide-induced hypotension and inflammatory mediators. J Ethnopharmacol 96:99–106

    Article  PubMed  Google Scholar 

  6. Chen HC, Hsieh MT (1986) Hemodynamic effects of “san-huang-hsieh-hsin-tang” in patients with essential hypertension. Am J Chin Med 14:153–156

    Article  PubMed  CAS  Google Scholar 

  7. Chen HC, Hsieh MT (1986) Two-year experience with “San-Huang-Hsieh-Hsin-Tang” in essential hypertension. Am J Chin Med 14:51–58

    Article  PubMed  CAS  Google Scholar 

  8. Shih YT, Chen IJ, Wu YC, Lo YC (2011) San-Huang-Xie-Xin-Tang protects against activated microglia- and 6-OHDA-induced toxicity in neuronal SH-SY5Y cells. Evid Based Complement Alternat Med. doi:10.1093/ecam/nep025

  9. Wang YS, Lin RT, Cheng HY, Yang SF, Chou WW, Juo SH (2011) Anti-atherogenic effect of san-huang-xie-xin-tang, a traditional Chinese medicine, in cultured human aortic smooth muscle cells. J Ethnopharmacol 133:442–447

    Article  PubMed  Google Scholar 

  10. Huang YB, Wu PC, Su CS, Wu YC, Tsai YH (2006) Simultaneous quantification of twelve bioactive components in San-Huang-Xie-Xin-Tang by HPLC. Phytochem Anal 17:439–446

    Article  PubMed  CAS  Google Scholar 

  11. Shia CS, Hou YC, Juang SH, Tsai SY, Hsieh PH, Ho LC, Chao PD (2011) Metabolism and pharmacokinetics of San-Huang-Xie-Xin-Tang, a polyphenol-rich Chinese medicine formula, in rats and ex vivo antioxidant activity. Evid Based Complement Alternat Med [Epub ahead of print]

  12. Chang WT, Shao ZH, Yin JJ, Mehendale S, Wang CZ, Qin Y, Li J, Chen WJ, Chien CT, Becker LB, Vanden-Hoek TL, Yuan CS (2007) Comparative effects of flavonoids on oxidant scavenging and ischemia–reperfusion injury in cardiomyocytes. Eur J Pharmacol 566:58–66

    Article  PubMed  CAS  Google Scholar 

  13. Zhang Z, Wu R, Li P, Liu F, Zhang W, Zhang P, Li P, Wang Y (2009) Baicalin administration is effective in positive regulation of twenty-four ischemia/reperfusion-related proteins identified by a proteomic study. Neurochem Int 54:488–496

    Article  PubMed  CAS  Google Scholar 

  14. Hou Q, Hsu YT (2005) Bax translocates from cytosol to mitochondria in cardiac cells during apoptosis: development of a GFP-Bax-stable H9c2 cell line for apoptosis analysis. Am J Physiol Heart Circ Physiol 289:H477–H487

    Article  PubMed  CAS  Google Scholar 

  15. Wang B, Shravah J, Luo H, Raedschelders K, Chen DD, Ansley DM (2009) Propofol protects against hydrogen peroxide-induced injury in cardiac H9c2 cells via Akt activation and Bcl-2 up-regulation. Biochem Biophys Res Commun 389:105–111

    Article  PubMed  CAS  Google Scholar 

  16. Fu J, Lin G, Wu Z, Ceng B, Wu Y, Liang G, Qin G, Li J, Chiu I, Liu D (2006) Anti-apoptotic role for C1 inhibitor in ischemia/reperfusion-induced myocardial cell injury. Biochem Biophys Res Commun 349:504–512

    Article  PubMed  CAS  Google Scholar 

  17. Fu J, Huang H, Liu J, Pi R, Chen J, Liu P (2007) Tanshinone IIA protects cardiac myocytes against oxidative stress-triggered damage and apoptosis. Eur J Pharmacol 568:213–221

    Article  PubMed  CAS  Google Scholar 

  18. Roy AM, Baliga MS, Elmets CA, Katiyar SK (2005) Grape seed proanthocyanidins induce apoptosis through p53, Bax, and caspase-3 pathways. Neoplasia 7:24–36

    Article  PubMed  CAS  Google Scholar 

  19. Li WJ, Nie SP, Yan Y, Zhu SB, Xie MY (2009) The protective effect of Ganoderma atrum polysaccharide against anoxia/reoxygenation injury in neonatal rat cardiomyocytes. Life Sci 85:634–641

    Article  PubMed  CAS  Google Scholar 

  20. Ambrosio G, Flaherty JT, Duilio C, Tritto I, Santoro G, Elia PP, Condorelli M, Chiariello M (1991) Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused hearts. J Clin Invest 87:2056–2066

    Article  PubMed  CAS  Google Scholar 

  21. Toufektsian MC, Boucher FR, Tanguy S, Morel S, de Leiris JG (2001) Cardiac toxicity of singlet oxygen: implication in reperfusion injury. Antioxid Redox Signal 3:63–69

    Article  PubMed  CAS  Google Scholar 

  22. Ferrari R, Agnoletti L, Comini L, Gaia G, Bachetti T, Cargnoni A, Ceconi C, Curello S, Visioli O (1998) Oxidative stress during myocardial ischaemia and heart failure. Eur Heart J 19(Suppl B):B2–B11

    PubMed  CAS  Google Scholar 

  23. Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH (1999) Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res 84:21–33

    PubMed  CAS  Google Scholar 

  24. Jones SP, Girod WG, Palazzo AJ, Granger DN, Grisham MB, Jourd’Heuil D, Huang PL, Lefer DJ (1999) Myocardial ischemia–reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase. Am J Physiol 276:H1567–H1573

    PubMed  CAS  Google Scholar 

  25. Sumeray MS, Rees DD, Yellon DM (2000) Infarct size and nitric oxide synthase in murine myocardium. J Mol Cell Cardiol 32:35–42

    Article  PubMed  CAS  Google Scholar 

  26. Wolfrum S, Dendorfer A, Schutt M, Weidtmann B, Heep A, Tempel K, Klein HH, Dominiak P, Richardt G (2004) Simvastatin acutely reduces myocardial reperfusion injury in vivo by activating the phosphatidylinositide 3-kinase/Akt pathway. J Cardiovasc Pharmacol 44:348–355

    Article  PubMed  CAS  Google Scholar 

  27. Razavi HM, Hamilton JA, Feng Q (2005) Modulation of apoptosis by nitric oxide: implications in myocardial ischemia and heart failure. Pharmacol Ther 106:147–162

    Article  PubMed  CAS  Google Scholar 

  28. Liu YN, Zhou ZM, Chen P (2008) Evidence that hydroxysafflor yellow A protects the heart against ischaemia–reperfusion injury by inhibiting mitochondrial permeability transition pore opening. Clin Exp Pharmacol Physiol 35:211–216

    PubMed  CAS  Google Scholar 

  29. Csont T, Görbe A, Bereczki E, Szunyog A, Aypar E, Tóth ME, Varga ZV, Csonka C, Fülöp F, Sántha M, Ferdinandy P (2010) Biglycan protects cardiomyocytes against hypoxia/reoxygenation injury: role of nitric oxide. J Mol Cell Cardiol 48:649–652

    Article  PubMed  CAS  Google Scholar 

  30. Masano T, Kawashima S, Toh R, Satomi-Kobayashi S, Shinohara M, Takaya T, Sasaki N, Takeda M, Tawa H, Yamashita T, Yokoyama M, Hirata K (2008) Beneficial effects of exogenous tetrahydrobiopterin on left ventricular remodeling after myocardial infarction in rats: the possible role of oxidative stress caused by uncoupled endothelial nitric oxide synthase. Circ J 72:1512–1519

    Article  PubMed  CAS  Google Scholar 

  31. Okazaki T, Otani H, Shimazu T, Yoshioka K, Fujita M, Iwasaka T (2011) Ascorbic acid and N-acetyl cysteine prevent uncoupling of nitric oxide synthase and increase tolerance to ischemia/reperfusion injury in diabetic rat heart. Free Radic Res 45:1173–1183

    Google Scholar 

  32. Sun J, Druhan LJ, Zweier JL (2010) Reactive oxygen and nitrogen species regulate inducible nitric oxide synthase function shifting the balance of nitric oxide and superoxide production. Arch Biochem Biophys 494:130–137

    Article  PubMed  CAS  Google Scholar 

  33. Shimada K, Nakamura M, Ishida E, Kishi M, Konishi N (2003) Roles of p38- and c-jun NH2-terminal kinase-mediated pathways in 2-methoxyestradiol-induced p53 induction and apoptosis. Carcinogenesis 24:1067–1075

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Li-Ying Chen for technical assistance. This work was supported by Grant CCMP96-RD-014 to Dr. Jwu-Lai Yeh from the Committee on Chinese Medicine and Pharmacy, Department of Health, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jwu-Lai Yeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liou, SF., Hsu, JH., Liang, JC. et al. San-Huang-Xie-Xin-Tang protects cardiomyocytes against hypoxia/reoxygenation injury via inhibition of oxidative stress-induced apoptosis. J Nat Med 66, 311–320 (2012). https://doi.org/10.1007/s11418-011-0592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0592-0

Keywords

Navigation