Skip to main content
Log in

In vitro anti-plasmodial and in vivo anti-malarial activity of some plants traditionally used for the treatment of malaria by the Meru community in Kenya

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Extracts of seven medicinal plant species used for treatment of malaria in traditional/cultural health systems of the Ameru people in Kenya were tested in vitro and in vivo against Plasmodium falciparum (D6 and W2 strains) and P. berghei, respectively. Of the plants tested, 28.57% were highly active (IC50 <10 μg/ml) and 42.86% moderately active (IC50 10–50 μg/ml), while 28.57% had weak activity of 50–125 μg/ml in vitro. The water and methanol extracts of Boscia salicifolia Oliv. and Artemisia afra Jacq. (ex-Willd.) were the most active against both the chloroquine (CQ)-sensitive (D6) and the CQ-resistant (W2) P. falciparum strains. Artemisia afra and Rhus natalensis Bernh. (ex-Krauss) exhibited the highest parasite clearance and chemo-suppression (>70%) in vivo (in mice). The plants with high in vitro anti-plasmodial (low IC50 values) and high anti-malarial activity (high chemo-suppression) in vivo are potential sources of novel anti-malarial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breman JG (2001) The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 64:1–11

    PubMed  CAS  Google Scholar 

  2. WHO (2000) Global surveillance on control of leishmaniasis. A report of the scientific group. Technical report series, no. 529. WHO, Geneva

  3. Trape JF (2001) The public health impact of chloroquine resistance in Africa. Am J Trop Med Hyg 64:12–17

    PubMed  CAS  Google Scholar 

  4. Snow RW, Trape JF, Marsh K (2001) The past, present and future of childhood malaria mortality in Africa. Trends Parasitol 17:593–597

    Article  PubMed  CAS  Google Scholar 

  5. Olliaro PL, Bloland PB (2001) Clinical and public health implications of anti-malarial drug. In: Rosenthal PJ (ed) Drug discovery. Humana, Totowa, pp 65–83

    Google Scholar 

  6. Ridley RG (1997) Plasmodium. Drug discovery and development; an industrial perspective. Exp Parasitol 87:293–304

    Article  PubMed  CAS  Google Scholar 

  7. Harald N, Chansuda W, Walther H (2003) Malaria drug-sensitivity testing: new assays, new perspectives. Trends Parasitol 19:175–178

    Article  CAS  Google Scholar 

  8. Majori G (2004) Combined anti-malarial therapy using artemisinin. Parasitologia 46:85–87

    CAS  Google Scholar 

  9. Trape JF (2002) Combating malaria in Africa. Trends Parasitol 18:224–230

    Article  PubMed  Google Scholar 

  10. Bloland P (2001) Drug resistance in malaria. WHO/CDS/DRS.4. WHO, Geneva

  11. Mueller MS, Karhagomba IB, Hirt HM, Wemakor E (2000) The potential of Artemisia annua L. as a locally produced remedy for malaria in the tropics: agricultural, chemical and clinical aspects. J Ethnopharmacol 73:487–493

    Article  PubMed  CAS  Google Scholar 

  12. Tagboto S, Townson S (2001) Anti-parasitic properties of medicinal plants and other naturally occuring products. Adv Parasitol 50:199–295

    Article  PubMed  CAS  Google Scholar 

  13. Garham PCC (1966) Malaria parasites and other haemosporidia. Blackwell, Oxford, pp 470

  14. Meshnick SR (2001) Artemisinin and its derivatives. In: Rosenthal PJ (ed) Anti-malarial chemotherapy: mechanisms of action, resistance, and new directions in drug discovery. Humana, Totowa, pp 191–201

    Google Scholar 

  15. Njoroge GN, Bussmann RW (2006) Diversity and utilization of anti-malarial ethno-phytotherapeutic remedies among the Kikuyus (Central Kenya). J Ethnobiol Ethnomed 2:1–8

    Article  Google Scholar 

  16. Wanyonyi AW, Chhabra SC, Mkoji G, Eilert U, Njue WM (2002) Bioactive steroidal alkaloid glycosides from Solanum aculeastrum. Phytochemistry 59:79–84

    Article  PubMed  CAS  Google Scholar 

  17. Muregi FW, Chhabra SC, Njagi ENM, Lang’at-Thoruwa CC, Njue W.M, Orago ASS, Omar SA, Ndiege IO (2004) Anti-plasmodial activity of some Kenyan medicinal plant extracts singly and in combination with chloroquine. Phytother Res 18:379–384

    Article  PubMed  CAS  Google Scholar 

  18. Muregi FW, Chhabra SC, Njagi ENM, Lang’at-Thoruwa CC, Njue WM, Orago ASS, Omar SA, Ndiege IO (2003) In vitro anti-plasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiation effects. J Ethnopharmacol 84:235–239

    Article  PubMed  CAS  Google Scholar 

  19. Wanyoike GN, Chhabra SC, Lang’at-Thoruwa CC, Omar SA (2004) Brine shrimp toxicity and anti-plasmodial activity of five Kenyan medicinal plants. J Ethnopharmacol 90:129–133

    Article  PubMed  CAS  Google Scholar 

  20. Kirira PG, Rukunga GM, Wanyonyi AW, Muregi FM, Gathirwa JW, Muthaura CN, Omar SA, Tolo F, Mungai GM, Ndiege IO (2006) Anti-plasmodial activity and toxicity of extracts of plants used in traditional malaria therapy in Meru and Kilifi districts of Kenya. J Ethnopharmacol (in press)

  21. Houghton PJ (2001) Old yet new-pharmaceuticals from plants. J Chem Ed 78:175–184

    Article  CAS  Google Scholar 

  22. Dominique D, Karine LR, Pina S, Pietro A, Daniel P, Patrick P, Laurent M, Christian D (2001) Pfnek-1, a NIMA-related kinase from the human malaria parasite Plasmodium falciparum; biochemical properties and possible involvement in MAPK regulation. Eur J Biochem 268:2600–2608

    Article  Google Scholar 

  23. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675

    Article  PubMed  CAS  Google Scholar 

  24. Schlichtherle M, Wahlgren M, Perlmann H, Scherf A (2000) Methods in malaria research, 3rd edn. MR4/ATCC, Manassas, pp 1–74

  25. Desjardins RE, Canfield C, Haynes J, Chulay J (1979) Quantitative assessment of anti-malarial activity in vitro by a semi-automated microdilution technique. Antimicrob Agents Chemother 16:710–718

    PubMed  CAS  Google Scholar 

  26. Azas N, Laurencin N, Delmas F, Giorgio C, Gasquet M, Laget M, Timon-David P (2001) Synergistic in vitro anti-malarial activity of plant extracts used as traditional herbal remedies in Mali. Parasitol Res 88:165–171

    Google Scholar 

  27. Sixsmith DG, Watkins WM, Chulay JD, Spencer HC (1984) In vitro anti-malarial activity of tetrahydrofoliate dehydrogenase inhibitors. Am J Trop Med Hyg 33:772–776

    PubMed  CAS  Google Scholar 

  28. Peters W, Portus JH, Robinson BL (1975) The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of Plasmodium berghei in screening for blood schizontocidal activity. Ann Trop Med Parasitol 69:155–171

    PubMed  CAS  Google Scholar 

  29. Gessler MC, Tanner M, Chollet J, Nkunya MHH, Heinrick M (1995) Tanzanian medicinal plants used traditionally for the treatment of malaria: in vivo anti-malarial and in vitro cytotoxic activities. Phytother Res 9:504–508

    Article  Google Scholar 

  30. Ajaiyeoba EO, Abalogu UI, Krebs HC, Oduola AMJ (1999) In vivo anti-malarial activities of Quassia amara and Quassia undulata plant extracts in mice. J Ethnopharmacol 67:321–171

    Article  PubMed  CAS  Google Scholar 

  31. Tona L, Mesia K (2001) In-vivo antimalarial activity of Cassia occidentalis, Morinda morindoides and Phyllanthus niruri. Ann Trop Med Parasitol 95:47–57

    Article  PubMed  CAS  Google Scholar 

  32. Armitage P, Berry G (1991) Statistical methods in medicinal research. Blackwell, Oxford, pp 90–92

    Google Scholar 

  33. Kurokawa M, Nagasaka K, Hirabayashi T, Uyama S, Sato H, Kageyama T, Kadota S, Ohyama H, Hozumi T, Namba T, Shiraki K (1995) Efficacy of traditional herbal medicines in combination with acyclovir against herpes simplex virus type 1 infection in vitro and in vivo. Antiviral Res 27:19–37

    Article  PubMed  CAS  Google Scholar 

  34. Wright CW, Phillipson JD (1990) Natural products and the development of selective anti-protozoal drugs. Phytother Res 4:4–10

    Article  Google Scholar 

  35. Dunnett CW (1964) New tables for multiple comparisons with a control. Biometrics 1:482–491

    Article  Google Scholar 

  36. Benoit F, Robert A, Meunier B (2000) In vitro and in vivo potentiation of artemisinin and synthetic endoperoxide anti-malarial drugs by metalloporphyrins. Antimicrob Agents Chemother 44:2836–2841

    Article  Google Scholar 

  37. Kingsbury JM (1964) Poisonous plants of the United States and Canada. Prentice-Hall, Englewood Cliffs, pp 626

  38. Collu G, Unver N, Peltenburg-looman AG, Van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase1, a cytochrome p450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220

    Article  PubMed  CAS  Google Scholar 

  39. Vimala Y, Jain R (2001) A new flavone in mature Catharanthus roseus petals. Indian J Plant Physiol 6:187–189

    CAS  Google Scholar 

  40. Hirose F, Ashihara H (1984) Metabolic regulation in plant cell culture-fine control of purine nucleotide biosynthesis in intact cells of Catharanthus roseus. J Plant Physiol 116:417–423

    CAS  Google Scholar 

  41. Kraft C, Jenett-Siems K, Siems K, Jakupovic J, Mavi S, Bienzle U, Eich E (2003) In vitro anti-plasmodial evaluation of medicinal plants from Zimbabwe. Phytother Res 17:123–128

    Article  PubMed  CAS  Google Scholar 

  42. Verotta L, Dell’agli M, Giolito A, Guerrini M, Cabalion P, Bosisio E (2001) In vitro antiplasmodial activity of extracts of tristaniopsis species and identification of the active constituents: ellagic acid and 3,4,5-trimethoxyphenyl-(6′-o-galloyl)-o-β-d-glucopyranoside. J Nat Prod 64:603–607

    Article  PubMed  CAS  Google Scholar 

  43. Benoit F, Valentin A, Pelissier Y, Diafouka F, Marion C, Kone-Bamba D, Kone M, Mallie M, Yapo A, Bastide JM (1996) In vitro anti-malarial activity of vegetal extracts used in West African traditional medicine. Am J Trop Med Hyg 54:67–71

    PubMed  CAS  Google Scholar 

  44. Mainen JM, Joseph CC, Zakaria H, Mbwambo MK, Nkunya HHM (2004) Testing beyond ethno-medical claims: brine shrimp lethality of some Tanzanian plants. Pharm Biol 42:547–551

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the World Health Organization (WHO) for funding all aspects of this study under TDR-WHO grant no. A30707. Mr. G. Mungai of the East African Herbarium, National Museums of Kenya (NMK), is acknowledged for assisting in the collection and botanical identification of the medicinal plants. We recognize the Director of KEMRI for allowing the publication of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaiah O. Ndiege.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gathirwa, J.W., Rukunga, G.M., Njagi, E.N.M. et al. In vitro anti-plasmodial and in vivo anti-malarial activity of some plants traditionally used for the treatment of malaria by the Meru community in Kenya. J Nat Med 61, 261–268 (2007). https://doi.org/10.1007/s11418-007-0140-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-007-0140-0

Keywords

Navigation