Skip to main content
Log in

Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for N ≥ 3

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The authors prove that flat ground state solutions (i.e. minimizing the energy and with gradient vanishing on the boundary of the domain) of the Dirichlet problem associated to some semilinear autonomous elliptic equations with a strong absorption term given by a non-Lipschitz function are unstable for dimensions N = 1,2 and they can be stable for N ≥ 3 for suitable values of the involved exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez, L. and Díaz, J. I., On the retention of the interfaces in some elliptic and parabolic nonlinear problems, Discrete and Continuum Dynamical Systems, 25(1), 2009, 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  2. Antontsev, S., Díaz, J. I. and Shmarev, S., Energy methods for free boundary problems, Applications to Nonlinear PDEs and Fluid Mechanics, Birkäuser, Boston, 2002.

    Book  MATH  Google Scholar 

  3. Akagi, G. and Kajikiya, R., Stability of stationary solutions for semilinear heat equations with concave nonlinearity, Communications in Contemporary Mathematics, to appear.

  4. Benilan, Ph., Brezis, H. and Crandall, M. G., A semilinear equation in L1(RN), Ann. Scuola Norm. Sup. Pisa, 4(2), 1975, 523–555.

    MathSciNet  MATH  Google Scholar 

  5. Bertsch, M. and Rostamian, R., The principle of linearized stability for a class of degenerate diffusion equations, J. Differ. Equat, 57, 1985, 373–405.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bensoussan, A., Brezis, H. and Friedman, A., Estimates on the free boundary for quasi variational inequalities, Comm. PDEs, 2, 1977, 297–321.

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezis, H., Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional Analysis, E. Zarantonello (ed.), Academic Press, New York, 1971, 101–156.

  8. Brezis, H., Operateurs Maximaux Monotones et Semigroupes de Contractions Dans les Espaces de Hilbert, North Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  9. Brezis, H., Solutions of variational inequalities with compact support, Uspekhi Mat. Nauk., 129, 1974, 103–108.

    MathSciNet  MATH  Google Scholar 

  10. Brezis, H. and Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proceedings of the American Mathematical Society, 88(3), 1983, 486–490.

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezis, H. and Lieb, E., Minimum action solutions of some vector field equations, Comm. Math. Phys., 96, 1984, 97–113.

    Article  MathSciNet  MATH  Google Scholar 

  12. Brezis, H. and Nirenberg, L., Removable singularities for nonlinear elliptic equations, Topol. Methods Nonlinear Anal., 9, 1997, 201–219.

    MathSciNet  MATH  Google Scholar 

  13. Brezis, H. and Friedman, A., Estimates on the support of solutions of parabolic variational inequalities, Illinois J. Math., 20, 1976, 82–97.

    MathSciNet  MATH  Google Scholar 

  14. Cazenave, T., Dickstein, T. and Escobedo, M., A semilinear heat equation with concave-convex nonlinearity, Rendiconti di Matematica, Serie VII, 19, 1999, 211–242.

    MathSciNet  MATH  Google Scholar 

  15. Cazenave, T. and Haraux, A., An introduction to semilinear evolution equations, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, New York, 1998.

    MATH  Google Scholar 

  16. Cortázar, C., Elgueta, M. and Felmer, P., Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation, Comm. PDEs, 21, 1996, 507–520.

    Article  MathSciNet  MATH  Google Scholar 

  17. Cortázar, C., Elgueta, M. and Felmer, P., On a semi-linear elliptic problem in RNwith a non-Lipschitzian non-linearity, Advances in Diff. Eqs., 1, 1996, 199–218.

    MATH  Google Scholar 

  18. Daners, D. and Koch Medina, P., Abstract evolution equations, periodic problems and applications, Pitman Research Notes in Mathematics Series, Vol. 279, Longman, Harlow, Essex, 1992.

    MATH  Google Scholar 

  19. Dao, A. N., Díaz, J. I. and Sauvy, P., Quenching phenomenon of singular parabolic problems with L1 initial data, Electronic J. Diff. Eqs., 2016(136), 2016, 1–16.

    MATH  Google Scholar 

  20. Dávila, J. and Montenegro, M., Existence and asymptotic behavior for a singular parabolic equation, Transactions of the AMS, 357, 2005, 1801–1828

    Article  MathSciNet  MATH  Google Scholar 

  21. Díaz, J. I., Nonlinear Partial Differential Equations and Free Boundaries, Pitman Research Notes in Mathematics Series, Vol. 106, Pitman, London, 1985.

    MATH  Google Scholar 

  22. Díaz, J. I., On the Haïm Brezis pioneering contributions on the location of free boundaries, Proceedings of the Fifth European Conference on Elliptic and Parabolic Problems; A special tribute to the work of Haïm Brezis, M. Chipot et al. (eds.), Birkhauser Verlag, Bassel, 2005, 217–234.

    Google Scholar 

  23. Díaz, J. I., On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via flat solutions: The one-dimensional case, Interfaces and Free Boundaries, 17, 2015, 333–351.

    Article  MathSciNet  MATH  Google Scholar 

  24. Díaz, J. I., On the ambiguous treatment of the Schrödinger equation for infinite potential well and an alternative via flat solutions: The multi-dimensional case, to appear.

  25. Díaz, J. I. and Hernández, J., Global bifurcation and continua of non-negative solutions for a quasilinear elliptic problem, C. R. Acad. Sci. Paris, 329, 1999, 587–592.

    Article  MathSciNet  Google Scholar 

  26. Díaz, J. I. and Hernández, J., Positive and nodal solutions bifurcating from the infinity for a semilinear equation: Solutions with compact support, Portugaliae Math., 72(2), 2015, 145–160.

    Article  MathSciNet  MATH  Google Scholar 

  27. Díaz, J. I., Hernández, J. and Ilyasov, Y., On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption, Nonlinear Analysis Series A: Theory, Mehods and Applications, 119, 2015, 484–500.

    Article  MathSciNet  MATH  Google Scholar 

  28. Díaz, J. I., Hernández, J. and Maagli, H., in preparation.

  29. Díaz, J. I., Hernández, J. and Mancebo, F. J., Branches of positive and free boundary solutions for some singular quasilinear elliptic problems, J. Math. Anal. Appl., 352, 2009, 449–474.

    Article  MathSciNet  MATH  Google Scholar 

  30. Díaz, J. I., Mingazzini, T. and Ramos, A. M., On the optimal control for a semilinear equation with cost depending on the free boundary, Networks and Heterogeneous Media, 7, 2012, 605–615.

    Article  MathSciNet  MATH  Google Scholar 

  31. Díaz, J. I. and Tello, L., On a nonlinear parabolic problem on a Riemannian manifold without boundary arising in Climatology, Collectanea Mathematica, L, 1999, 19–51.

    Google Scholar 

  32. Díaz, J. I. and Vrabie, I. I., Existence for reaction-diffusion systems, A compactness method approach, J. Math. Anal. Appl., 188, 1994, 521–540.

  33. Giacomoni, J., Sauvy, P. and Shmarev, S., Complete quenching for a quasilinear parabolic equation, J. Math. Anal. Appl., 410, 2014, 607–624.

    Article  MathSciNet  MATH  Google Scholar 

  34. Lions, P. L., The concentration-compactness principle in the calculus of variations, The locally compact case, Part 2, Annales de l’Institut Henri Poincaré: Analyse Non Linèaire, 1(4), 1984, 223–283.

  35. Dickstein, F., On semilinear parabolic problems with non-Lipschitz nonlinearity, to appear.

  36. Fujita, H. and Watanabe, S., On the uniqueness and non-uniqueness of solutions of initial value problems for some quasi-linear parabolic equations, Comm. Pure Appl. Math., 21, 1968, 631–652.

    Article  MathSciNet  MATH  Google Scholar 

  37. Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Oder, 2nd ed., Springer-Verlag, Berlin, 1983.

    Book  MATH  Google Scholar 

  38. Hernández, J., Mancebo, F. J. and Vega, J. M., On the linearization ofsome singular nonlinear elliptic problems and applications, Annales de l’Institut Henri Poincaré: Analyse Non Linèaire, 19, 2002, 777–813.

    MATH  Google Scholar 

  39. Il’yasov, Y. S., Nonlocal investigations of bifurcations of solutions of nonlinear elliptic equations, Izv. Math., 66(6), 2002, 1103–1130.

    Article  MathSciNet  MATH  Google Scholar 

  40. Il’yasov, Y. S., On calculation of the bifurcations by the fibering approach, Harmonic, Wavelet and P-adic Analysis, N. M. Chuong, et al. (eds.), World Scientific Publishing, Singapore, 2007, 141–155.

  41. Il’yasov, Y. S., On critical exponent for an elliptic equation with non-Lipschitz nonlinearity, Dynamical Systems, Supplement, 2011, 698–706.

    MATH  Google Scholar 

  42. Il’yasov, Y. S. and Egorov, Y., Höpf maximum principle violation for elliptic equations with non-Lipschitz nonlinearity, Nonlin. Anal., 72, 2010, 3346–3355.

    Article  MathSciNet  MATH  Google Scholar 

  43. Il’yasov, Y. S. and Takac, P., Optimal-regularity, Pohozhaev’s identity, and nonexistence of weak solutions to some quasilinear elliptic equations, Journal of Differential Equations, 252(3), 2012, 2792–2822.

    Article  MathSciNet  MATH  Google Scholar 

  44. Kaper, H. and Kwong, M., Free boundary problems for Emden-Fowler equation, Differential and Integral Equations, 3, 1990, 353–362.

    MathSciNet  MATH  Google Scholar 

  45. Kaper, H., Kwong, M. and Li, Y., Symmetry results for reaction-diffusion equations, Differential and Integral Equations, 6, 1993, 1045–1056.

    MathSciNet  MATH  Google Scholar 

  46. Ozolins, V., Lai, R., Caflisch, R. and Osher, S., Compressed modes for variational problems in mathematics and physics, Proc. Natl. Acad. Sci. USA, 110(46), 2013, 18368–18373.

    Article  MathSciNet  MATH  Google Scholar 

  47. Ozolins, V., Lai, R., Caflisch, R. and Osher, S., Compressed plane waves yield a compactly supported multiresolution basis for the Laplace operator, Proc. Natl. Acad. Sci. USA, 111(5), 2014, 1691–1696.

    Article  MathSciNet  Google Scholar 

  48. Payne, L. E. and Sattinger, D. H., Saddle points and instability of nonlinear hyperbolic equations, Israel Journal of Mathematics, 22(3–4), 1975, 273–303.

    Article  MathSciNet  MATH  Google Scholar 

  49. Pohozaev, S. I., Eigenfunctions of the equation u+f(u) = 0, Sov. Math. Doklady, 5, 1965, 1408–1411.

    MathSciNet  MATH  Google Scholar 

  50. Pohozaev, S. I., On the method of fibering a solution in nonlinear boundary value problems, Proc. Stekl. Ins. Math., 192, 1990, 157–173.

    MathSciNet  Google Scholar 

  51. Serrin, J. and Zhou, H., Symmetry of ground states of quasilinear elliptic equations, Archive for Rational Mechanics and Analysis, 148(4), 1999, 265–290.

    Article  MathSciNet  MATH  Google Scholar 

  52. Szulkin, A. and Weth, T., The method of Nehari manifold, Handbook of nonconvex analysis and applications, D. Y. Gao et al. (ed.), International Press, Somerville, MA,2010, 597–632.

  53. Struwe, M., Variational Methods, Application to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1996.

    MATH  Google Scholar 

  54. Vrabie, I. I., Compactness Methods for Nonlinear Evolutions, Pitman Longman, London, 1987.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Ildefonso Díaz.

Additional information

Dedicated to a master, Haïm Brezis, with admiration

This work was supported by the projects of the DGISPI (Spain) (Ref. MTM2011-26119, MTM2014- 57113) and the UCM Research Group MOMAT (Ref. 910480).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, J.I., Hernández, J. & Il’yasov, Y. Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for N ≥ 3. Chin. Ann. Math. Ser. B 38, 345–378 (2017). https://doi.org/10.1007/s11401-016-1073-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-016-1073-2

Keywords

2000 MR Subject Classification

Navigation