Skip to main content
Log in

Nonlocal symmetries and explicit solutions of the Boussinesq equation

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The nonlocal symmetry of the Boussinesq equation is obtained from the known Lax pair. The explicit analytic interaction solutions between solitary waves and cnoidal waves are obtained through the localization procedure of nonlocal symmetry. Some other types of solutions, such as rational solutions and error function solutions, are given by using the fourth Painlevé equation with special values of the parameters. For some interesting solutions, the figures are given out to show their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lie, S., Über die Integration durch bestimmte integrale von einer Klasse linearer partieller differentialgleichungen, Arch. Math., 6, 1881, 328–368.

    MATH  Google Scholar 

  2. Ovsiannikov, L. V., Group Analysis of Differential Equations, Academic, New York, 1982.

    MATH  Google Scholar 

  3. Olver, P. J., Applications of Lie Groups to Differential Equations, Springer-Verlag, Berlin, 1986.

    Book  MATH  Google Scholar 

  4. Ibragimov, N. H., Transformation Groups Applied to Mathematical Physics Boston, Reidel, MA, 1985.

    Book  Google Scholar 

  5. Bluman, G. W. and Kumei, S., Symmetries and Differential Equations, Springer-Verlag, New York, 1989.

    Book  MATH  Google Scholar 

  6. Dong, Z. Z., Huang, F. and Chen, Y., Symmetry reductions and exact solutions of the two-layer model in atmosphere, Z. Naturforsch, 66, 2011, 75–86.

    Google Scholar 

  7. Hu, X. R., Huang, F. and Chen, Y., Symmetry reductions and exact solutions of the (2+1)-dimensional Navier-Stokes equations, Z. Naturforsch, 65, 2010, 1–7.

    Google Scholar 

  8. Chen, Y. and Dong, Z. Z., Symmetry reduction and exact solutions of the generalized Nizhnik-Novikov-Veselov equation, Nonlinear Anal., 71, 2009, 810–817.

    Article  MathSciNet  Google Scholar 

  9. Temuer, C. L., Eerdun, B. H. and Xia, T. C., Nonclassical symmetry of the wave equation with source, Chin. Ann. Math., 33A(2), 2012, 193–204. (in Chinese)

    MathSciNet  Google Scholar 

  10. Xia, T. C., Zhang, D. P. and Temuer, C. L., Nonclassical symmetry classification of the wave equation with a nonlinear source term, Acta Math. Sci., 32, 2012, 941–949.

    MathSciNet  MATH  Google Scholar 

  11. Bluman, G. W., Cheviakov, A. F. and Anco, S. C., Applications of Symmetry Methods to Partial Differential Equations, Springer-Verlag, New York, 2010.

    Book  MATH  Google Scholar 

  12. Bluman, G. W. and Cheviakov, A. F., Framework for potential systems and nonlocal symmetries: algorithmic approach, J. Math. Phys., 46, 2005, 1–19.

    MathSciNet  Google Scholar 

  13. Bluman, G. W., Reid, G. I. and Kumei, S., New classes of Symmetries for partial differential equations, J. Math. Phys., 29(4), 1988, 806–811.

    Article  MathSciNet  MATH  Google Scholar 

  14. Galas, F., New nonlocal symmetries with pseudopotentials, J. Phys. A: Math. Gen., 25, 1992, L981–L986.

    Article  MathSciNet  MATH  Google Scholar 

  15. Lou, S. Y., Hu, X. R. and Chen, Y., Nonlocal symmetries related to Bäcklund transformation and their applications, J. Phys. A: Math. Theor., 45, 2012, 155209–155209.

    Article  MathSciNet  Google Scholar 

  16. Hu, X. R., Lou, S. Y. and Chen, Y., Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation, Phys. Rev. E, 85, 2012, 056607-1–8.

    Google Scholar 

  17. Guthrie, G. A., More non-local symmetries of the KdV equation, J. Phys. A: Math. Gen., 26, 1993, L905–L908.

    Article  MathSciNet  Google Scholar 

  18. Akhatov, I. S. and Gazizov, R. K., Nonlocal symmetries: a heuristic approach, J. Math. Sci., 55, 1991, 1401–1450.

    Article  Google Scholar 

  19. Lou, S. Y., Conformal invariance and integrable models, J. Phys. A: Math. Phys., 30, 1997, 4803–4813.

    Article  MATH  Google Scholar 

  20. Lou, S. Y. and Hu, X. B., Non-local symmetries via Darboux transformations, J. Phys. A: Math. Gen., 30, 1997, L95–L100.

    Article  MathSciNet  MATH  Google Scholar 

  21. Xin, X. P. and Chen, Y., A method to construct the high order nonlocal symmetries, Chin. Phys. Lett., 30, 2013, 100202 1–4.

    Article  MathSciNet  Google Scholar 

  22. Edelen, D. G., Isovector Methods for Equations of Balance with Programs for Assistance in Operator Calculations and Exposition of Practical Topics of Eaterior Calculus, Alphen aam den Rijn: Sijthoff and Noordhoff, 1980.

    Google Scholar 

  23. Krasilshchik, I. S. and Vinogradov, A., Nonlocal symmetries and the theory of coverings: an addendum to A. M. Vinogradov’s ‘local symmetries and conservation laws’, Acta Appl. Math., 2, 1984, 79–96.

    Article  MathSciNet  Google Scholar 

  24. Lou, S. Y. and Hu, X. B., Nonlocal Lie-Bäcklund symmetries and Olver symmetries of the KdV equation, Chin. Phys. Lett., 10, 1993, 577–580.

    Article  MathSciNet  Google Scholar 

  25. Fan, E. G., Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277, 2000, 212–218.

    Article  MathSciNet  MATH  Google Scholar 

  26. Fan, E. G., Two new applications of the homogeneous balance method, Phys. Lett. A, 265, 2000, 353–357.

    Article  MathSciNet  MATH  Google Scholar 

  27. Clarkson, P. A. and Kruskal, M. D., New similarity reductions of the Boussinesq equation, J. Math. Phys., 30, 1989, 2201–2213.

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, C. X., Ma, W. X., Liu, X. J. and Zeng, Y. B., Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons, Inverse Prob., 23, 2007, 279–296.

    Article  MathSciNet  MATH  Google Scholar 

  29. Shin, H. J., Soliton on a cnoidal wave background in the coupled nonlinear Schrödinger equation, J. Phys. A: Math. Gen., 37, 2004, 8017–8030.

    Article  MATH  Google Scholar 

  30. Hu, X. B. and Lou, S. Y., Nonlocal symmetries of nonlinear integrable models, Proceedings of Institute of Mathematics of NAS of Ukraine, 30, 2000, 120–126.

    MathSciNet  Google Scholar 

  31. Shen, S. F., Qu, C. Z., Jin, Y. Y. and Ji, L. N., Maximal dimension of invariant subspaces to systems of nonlinear evolution equations, Chin. Ann. Math., 33B(2), 2012, 161–178.

    Article  MathSciNet  Google Scholar 

  32. Dong, Z. Z., Chen, Y., Kong, D. X. and Wang, Z. G., Symmetry reduction and exact solutions of a hyperbolic Monge-Ampere equation, Chin. Ann. Math., 33B(2), 2012, 309–316.

    Article  MathSciNet  Google Scholar 

  33. Clarkson, P. A., The fourth Painlevé transcendent, IMSAS Technical Report, UKC/IMS, 2008.

    Google Scholar 

  34. Clarkson, P. A., The fourth Painlevé equation and associated special polynomials, J. Math. Phys., 44, 2003, 5350–5374.

    Article  MathSciNet  MATH  Google Scholar 

  35. Airault, H., Rational solutions of Painlevé equations, Stud. Appl. Math., 61, 1979, 31–53.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangpeng Xin.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11275072, 11435005), the Research Fund for the Doctoral Program of Higher Education of China (No. 20120076110024), the Innovative Research Team Program of the National Natural Science Foundation of China (No. 61321064), the Shanghai Knowledge Service Platform for Trustworthy Internet of Things (No. ZF1213), the Shanghai Minhang District Talents of High Level Scientific Research Project and the Talent Fund and K. C. Wong Magna Fund in Ningbo University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, X., Chen, J. & Chen, Y. Nonlocal symmetries and explicit solutions of the Boussinesq equation. Chin. Ann. Math. Ser. B 35, 841–856 (2014). https://doi.org/10.1007/s11401-014-0868-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-014-0868-2

Keywords

2000 MR Subject Classification

Navigation