Skip to main content
Log in

Products of distributions, conservation laws and the propagation of δ′-shock waves

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

This paper contains a study of propagation of singular travelling waves u(x, t) for conservation laws u t +[ϕ(u)] x = ψ(u), where ϕ, ψ are entire functions taking real values on the real axis. Conditions for the propagation of wave profiles β + and β + ′ are presented (β is a real continuous function, m ≠ 0 is a real number and δ′ is the derivative of the Dirac measure δ). These results are obtained with a consistent concept of solution based on our theory of distributional products. Burgers equation \(u_t + \left( {\tfrac{{u^2 }} {2}} \right)_x = 0\), the diffusionless Burgers-Fischer equation \(u_t + a\left( {\tfrac{{u^2 }} {2}} \right)_x = ru\left( {1 - \tfrac{u} {k}} \right)\) with a, r, k being positive numbers, Leveque and Yee equation \(u_t + u_x = uu\left( {1 - u} \right)\left( {u - \tfrac{1} {2}} \right)\) with μ ≠ 0, and some other examples are studied within such a setting. A “tool box” survey of the distributional products is also included for the sake of completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouchut, F. and James, F., Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, Comm. PDE, 24, 1999, 2173–2190.

    Article  MathSciNet  MATH  Google Scholar 

  2. Brenier, Y. and Grenier, E., Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 35, 1998, 2317–2328.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bressan, A. and Rampazzo, F., On differential systems with vector valued impulsive controls, Bull. Un. Mat. Ital. Ser. B, 2(7), 1988, 641–656.

    MathSciNet  MATH  Google Scholar 

  4. Chen, G. Q. and Liu, H., Formation of delta shocks and vacuum states in the vanishing pressure limit of solutions to Euler equations for isentropic fluids, SIAM J. Math. Anal., 34, 2003, 925–938.

    Article  MathSciNet  MATH  Google Scholar 

  5. Colombeau, J. F. and Le Roux, A., Multiplication of distributions in elasticity and hydrodynamics, J. Math. Phys., 29, 1988, 315–319.

    Article  MathSciNet  MATH  Google Scholar 

  6. Dal Maso, G., Lefloch, P. and Murat, F., Definitions and weak stability of nonconservative products, J. Math. Pures Appl., 74, 1995, 483–548.

    MathSciNet  MATH  Google Scholar 

  7. Danilov, V. G. and Shelkovich, V. M., Dynamics of propagation and interaction of shock waves in conservation law systems, J. Diff. Equations, 211, 2005, 333–381.

    Article  MathSciNet  MATH  Google Scholar 

  8. Danilov, V. G. and Shelkovich, V. M., Delta-shock wave type solution of hyperbolic systems of conservation laws, Q. Appl. Math., 29, 2005, 401–427.

    MathSciNet  Google Scholar 

  9. Huang, F., Weak solutions to pressureless type system, Comm. PDE, 30, 2005, 283–304.

    Article  MATH  Google Scholar 

  10. Keyfitz, B. L. and Kranzer, H. C., Spaces of weighted measures for conservation laws with singular shock solutions, J. Diff. Equations, 118, 1995, 420–451.

    Article  MathSciNet  MATH  Google Scholar 

  11. LeVeque, R. J. and Yee, H. C., A study of numerical methods for hyperbolic conservation laws with stiff source terms, J. Comput. Phys., 86, 1990, 187–210.

    Article  MathSciNet  MATH  Google Scholar 

  12. Lika K. and Hallan, T. G., Travelling wave solutions of a nonlinear reaction-advection equation, J. Math. Biol., 38, 1999, 346–358.

    Article  MathSciNet  MATH  Google Scholar 

  13. Mickens, R. E., A nonstandard finite difference scheme for the diffusionless Burgers equation with logistic reaction, Math. Comput. Simulation, 62, 2003, 117–124.

    Article  MathSciNet  MATH  Google Scholar 

  14. Nedeljkov, M., Unbounded solutions to some systems of conservation laws-split delta shock waves, Mat. Ves., 54, 2002, 145–149.

    MathSciNet  MATH  Google Scholar 

  15. Nedeljkov, M., Delta and singular delta locus for one dimensional systems of conservation laws, Math. Methods Appl. Sci., 27, 2004, 931–955.

    Article  MathSciNet  MATH  Google Scholar 

  16. Nedeljkov, M. and Oberguggenberger, M., Interactions of delta shock waves in a strictly hyperbolic system of conservation laws, J. Math. Anal. Appl., 334, 2008, 1143–1157.

    Article  MathSciNet  Google Scholar 

  17. Sarrico, C. O. R., About a family of distributional products important in the applications, Port. Math., 45, 1988, 295–316.

    MathSciNet  MATH  Google Scholar 

  18. Sarrico, C. O. R., Distributional products and global solutions for nonconservative inviscid Burgers equation, J. Math. Anal. Appl., 281, 2003, 641–656.

    Article  MathSciNet  MATH  Google Scholar 

  19. Sarrico, C. O. R., New solutions for the one-dimensional nonconservative inviscid Burgers equation, J. Math. Anal. Appl., 317, 2006, 496–509.

    Article  MathSciNet  MATH  Google Scholar 

  20. Sarrico, C. O. R., Collision of delta-waves in a turbulent model studied via a distributional product, Nonlinear Anal., 73, 2010, 2868–2875.

    Article  MathSciNet  MATH  Google Scholar 

  21. Sarrico, C. O. R., Entire functions of certain singular distributions and the interaction of delta waves in nonlinear conservation laws, Int. J. Math. Anal., 4(36), 2010, 1765–1778.

    MathSciNet  MATH  Google Scholar 

  22. Sarrico, C. O. R., Products of distributions and singular travelling waves solutions of advection-reaction equations, submitted.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Orlando R. Sarrico.

Additional information

Project supported by Fundação para a Ciência e a Tecnologia, PEst OE/MAT/UI0209/2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarrico, C.O.R. Products of distributions, conservation laws and the propagation of δ′-shock waves. Chin. Ann. Math. Ser. B 33, 367–384 (2012). https://doi.org/10.1007/s11401-012-0713-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-012-0713-4

Keywords

2000 MR Subject Classification

Navigation