Skip to main content
Log in

Automatic Colorization with Improved Spatial Coherence and Boundary Localization

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Grayscale image colorization is an important computer graphics problem with a variety of applications. Recent fully automatic colorization methods have made impressive progress by formulating image colorization as a pixel-wise prediction task and utilizing deep convolutional neural networks. Though tremendous improvements have been made, the result of automatic colorization is still far from perfect. Specifically, there still exist common pitfalls in maintaining color consistency in homogeneous regions as well as precisely distinguishing colors near region boundaries. To tackle these problems, we propose a novel fully automatic colorization pipeline which involves a boundary-guided CRF (conditional random field) and a CNN-based color transform as post-processing steps. In addition, as there usually exist multiple plausible colorization proposals for a single image, automatic evaluation for different colorization methods remains a challenging task. We further introduce two novel automatic evaluation schemes to efficiently assess colorization quality in terms of spatial coherence and localization. Comprehensive experiments demonstrate great quality improvement in results of our proposed colorization method under multiple evaluation metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levin A, Lischinski D, Weiss Y. Colorization using optimization. ACM Transactions on Graphics (TOG), 2004, 23(3): 689-694.

    Article  Google Scholar 

  2. Huang Y C, Tung Y S, Chen J C, Wang S W, Wu J L. An adaptive edge detection based colorization algorithm and its applications. In Proc. the 13th Annual ACM International Conference on Multimedia, Nov. 2005, pp.351-354.

  3. Luan Q, Wen F, Cohen-Or D, Liang L, Xu Y Q, Shum H Y. Natural image colorization. In Proc. the 18th Eurographics Conference on Rendering Techniques, Jun. 2007, pp.309-320.

  4. Qu Y,Wong T T, Heng P A. Manga colorization. ACM Transactions on Graphics (TOG), 2006, 25(3): 1214-1220.

    Article  Google Scholar 

  5. Zhao H L, Nie G Z, Li X J, Jin X G, Pan Z G. Structureaware nonlocal optimization framework for image colorization. Journal of Computer Science and Technology, 2015, 30(3): 478-488.

    Article  Google Scholar 

  6. Sheng B, Sun H, Magnor M, Li P. Video colorization using parallel optimization in feature space. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(3): 407-417.

    Article  Google Scholar 

  7. Welsh T, Ashikhmin M, Mueller K. Transferring color to greyscale images. ACM Transactions on Graphics (TOG), 2002, 21(3): 277-280.

    Article  Google Scholar 

  8. Irony R, Cohen-Or D, Lischinski D. Colorization by example. In Proc. Eurographics Symp. Rendering Techqiques, June 29-July 1, 2005, pp.201-210.

  9. Charpiat G, Hofmann M, Sch¨olkopf B. Automatic image colorization via multimodal predictions. In Proc. the 10th European Conference on Computer Vision, Oct. 2008, pp.126-139.

  10. Liu X, Wan L, Qu Y, Wong T T, Lin S, Leung C S, Heng P A. Intrinsic colorization. ACM Transactions on Graphics (TOG), 2008, 27(5): 152:1-152:9.

  11. Gupta R K, Chia A Y S, Rajan D, Ng E S et al. Image colorization using similar images. In Proc. the 20th ACM International Conference on Multimedia, Oct.29-Nov.2, 2012, pp.369-378.

  12. Jin S Y, Choi H J, Tai Y W. A randomized algorithm for natural object colorization. Computer Graphics Forum, 2014, 33(2): 205-214.

    Article  Google Scholar 

  13. Chia A Y S, Zhuo S, Gupta R K, Tai Y W, Cho S Y, Tan P, Lin S. Semantic colorization with Internet images. ACM Transactions on Graphics (TOG), 2011, 30(6): 156:1-156:8.

  14. Deshpande A, Rock J, Forsyth D. Learning large-scale automatic image colorization. In Proc. the IEEE International Conference on Computer Vision, Dec. 2015, pp.567-575.

  15. Li X, Zhao H, Nie G, Huang H. Image recoloring using geodesic distance based color harmonization. Computational Visual Media, 2015, 1(2): 143-155.

    Article  Google Scholar 

  16. Cheng Z, Yang Q, Sheng B. Deep colorization. In Proc. the IEEE International Conference on Computer Vision, Dec. 2015, pp.415-423.

  17. Dahl R. Automatic colorization. http://tinyclouds.org/colorize/, Aug. 2016.

  18. Larsson G, Maire M, Shakhnarovich G. Learning representations for automatic colorization. In Proc. European Conference on Computer Vision, Oct. 2016, pp.577-593.

  19. Zhang R, Isola P, Efros A A. Colorful image colorization. In Proc. European Conference on Computer Vision, Oct. 2016, pp.649-666.

  20. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014. https://arxiv.org/abs/1409.1556, Aug. 2016.

  21. Hariharan B, Arbeláez P, Girshick R, Malik J. Hypercolumns for object segmentation and fine-grained localization. In Proc. the IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2015, pp.447-456.

  22. Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. In Proc. the IEEE International Conference on Computer Vision, Dec. 2015, pp.1520-1528.

  23. Li G, Yu Y. Deep contrast learning for salient object detection. In Proc. the IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2016, pp.478-487.

  24. Li G, Yu Y. Visual saliency based on multiscale deep features. In Proc. the IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2015, pp.5455-5463.

  25. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proc. Advances in Neural Information Processing Systems, Dec. 2015, pp.91-99.

  26. Xie S, Tu Z. Holistically-nested edge detection. In Proc. the IEEE International Conference on Computer Vision, Dec. 2015, pp.1395-1403.

  27. Iizuka S, Simo-Serra E, Ishikawa H. Let there be color!: Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Transactions on Graphics (TOG), 2016, 35(4): 110:1-110:11.

  28. Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. In Proc. the IEEE International Conference on Computer Vision, Dec. 2015, pp.1520-1528.

  29. Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. arXiv:1511.07122, 2015. https://arxiv.org/abs/1511.07122, Aug. 2016.

  30. Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-1239.

    Article  Google Scholar 

  31. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proc. the IEEE International Conference on Computer Vision, Dec. 2015, pp.1026-1034.

  32. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: Convolutional architecture for fast feature embedding. In Proc. the 22nd ACM International Conference on Multimedia, Nov. 2014, pp.675-678.

  33. Felzenszwalb P F, Huttenlocher D P. Efficient graph-based image segmentation. International Journal of Computer Vision, 2004, 59(2): 167-181.

    Article  Google Scholar 

  34. Arbeláez P, Pont-Tuset J, Barron J T, Marques F, Malik J. Multiscale combinatorial grouping. In Proc. the IEEE Conference on Computer Vision and Pattern Recognition, June 2014, pp.328-335.

  35. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3): 211-252.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Bin Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Fang, CW. & Li, GB. Automatic Colorization with Improved Spatial Coherence and Boundary Localization. J. Comput. Sci. Technol. 32, 494–506 (2017). https://doi.org/10.1007/s11390-017-1739-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-017-1739-6

Keywords

Navigation