Skip to main content
Log in

A novel Phex mutation with defective glycosylation causes hypophosphatemia and rickets in mice

  • Published:
Journal of Biomedical Science

Abstract

N-ethyl-N-nitrosourea (ENU) mutagenesis is a phenotype-driven approach with potential to assign function to every locus in the mouse genome. In this article, we describe a new mutation, Pug, as a mouse model for X-linked hypophosphatemic rickets (XLH) in human. Mice carrying the Pug mutation exhibit abnormal phenotypes including growth retardation, hypophosphatemia and decreased bone mineral density (BMD). The new mutation was mapped to X-chromosome between 65.4 cM and 66.6 cM, where Phex gene resides. Sequence analysis revealed a unique T-to-C transition mutation resulting in Phe-to-Ser substitution at amino acid 80 of PHEX protein. In vitro studies of Pug mutation demonstrated that PHEXpug was incompletely glycosylated and sequestrated in the endoplasmic reticulum region of cell, whereas wild-type PHEX could be fully glycosylated and transported to the plasma membrane to exert its function as an endopeptidase. Taken together, the Pug mutant directly confirms the role of Phex in phosphate homeostasis and normal skeletal development and may serves as a new disease model of human hypophosphatemic rickets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herron B.J., Lu W., Rao C., Liu S., Peters H., Bronson R.T., Justice M.J., McDonald J.D., Beier D.R. Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis. Nat.Genet. 30:185–189, 2002

    Article  PubMed  CAS  Google Scholar 

  2. Nolan P.M., Peters J., Strivens M., Rogers D., Hagan J., Spurr N., Gray I.C., Vizor L., Brooker D., Whitehill E., Washbourne R., Hough T., Greenaway S., Hewitt M., Liu X., McCormack S., Pickford K., Selley R., Wells C., Tymowska-Lalanne Z., Roby P., Glenister P., Thornton C., Thaung C., Stevenson J.A., Arkell R., Mburu P., Hardisty R., Kiernan A., Erven A., Steel K.P., Voegeling S., Guenet J.L., Nickols C., Sadri R., Nasse M., Isaacs A., Davies K., Browne M., Fisher E.M., Martin J., Rastan S., Brown S.D., Hunter J. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat. Genet. 25:440–443, 2000

    Article  PubMed  CAS  Google Scholar 

  3. Balling R. ENU mutagenesis: analyzing gene function in mice. Annu. Rev. Genomics Hum. Genet. 2:463–492, 2001

    Article  PubMed  CAS  Google Scholar 

  4. Jan de Beur S.M., Levine M.A. Molecular pathogenesis of hypophosphatemic rickets. J. Clin. Endocrinol. Metab. 87:2467–2473, 2002

    Article  Google Scholar 

  5. Rowe P.S. The wrickkened pathways of FGF23, MEPE and PHEX. Crit. Rev. Oral Biol. Med. 15:264–281, 2004

    Article  PubMed  Google Scholar 

  6. Rowe P.S., Goulding J., Read A., Mountford R., Hanauer A., Oudet C., Whyte M.P., Meier-Ewert S., Lehrach H., Davies K.E., et al. New markers for linkage analysis of X-linked hypophosphataemic rickets. Hum. Genet. 91:571–575, 1993

    Article  PubMed  CAS  Google Scholar 

  7. HYP-Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat. Genet. 11:130–136, 1995

    Article  Google Scholar 

  8. Rowe P.S., Oudet C.L., Francis F., Sinding C., Pannetier S., Econs M.J., Strom T.M., Meitinger T., Garabedian M., David A., Macher M.A., Questiaux E., Popowska E., Pronicka E., Read A.P., Mokrzycki A., Glorieux F.H., Drezner M.K., Hanauer A., Lehrach H., Goulding J.N., O’Riordan J.L. Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP). Hum. Mol. Genet. 6:539–549, 1997

    Article  PubMed  CAS  Google Scholar 

  9. Filisetti D., Ostermann G., von Bredow M., Strom T., Filler G., Ehrich J., Pannetier S., Garnier J.M., Rowe P., Francis F., Julienne A., Hanauer A., Econs M.J., Oudet C. Non-random distribution of mutations in the PHEX gene, and under-detected missense mutations at non-conserved residues. Eur. J. Hum. Genet. 7:615–619, 1999

    Article  PubMed  CAS  Google Scholar 

  10. D’Adamio L., Shipp M.A., Masteller E.L., Reinherz E.L. Organization of the gene encoding common acute lymphoblastic leukemia antigen (neutral endopeptidase 24.11): multiple miniexons and separate 5′ untranslated regions. Proc Natl Acad Sci USA 86:7103–7107, 1989

    Article  PubMed  CAS  Google Scholar 

  11. Xu D., Emoto N., Giaid A., Slaughter C., Kaw S., deWit D., Yanagisawa M. ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell 78:473–485, 1994

    Article  PubMed  CAS  Google Scholar 

  12. Lee S., Zambas E.D., Marsh W.L., Redman C.M. Molecular cloning and primary structure of Kell blood group protein. Proc Natl Acad Sci USA 88:6353–6357, 1991

    Article  PubMed  CAS  Google Scholar 

  13. Francis F., Strom T.M., Hennig S., Boddrich A., Lorenz B., Brandau O., Mohnike K.L., Cagnoli M., Steffens C., Klages S., Borzym K., Pohl T., Oudet C., Econs M.J., Rowe P.S., Reinhardt R., Meitinger T., Lehrach H. Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res. 7:573–585, 1997

    PubMed  CAS  Google Scholar 

  14. Strom T.M., Francis F., Lorenz B., Boddrich A., Econs M.J., Lehrach H., Meitinger T. Pex gene deletions in Gy and Hyp mice provide mouse models for X-linked hypophosphatemia. Hum. Mol. Genet. 6:165–171, 1997

    Article  PubMed  CAS  Google Scholar 

  15. Ruchon A.F., Marcinkiewicz M., Siegfried G., Tenenhouse H.S., DesGroseillers L., Crine P., Boileau G. Pex mRNA is localized in developing mouse osteoblasts and odontoblasts. J. Histochem. Cytochem. 46:459–468, 1998

    PubMed  CAS  Google Scholar 

  16. Beck L., Soumounou Y., Martel J., Krishnamurthy G., Gauthier C., Goodyer C.G., Tenenhouse H.S. Pex/PEX tissue distribution and evidence for a deletion in the 3’ region of the Pex gene in X-linked hypophosphatemic mice. J. Clin. Invest. 99:1200–1209, 1997

    Article  PubMed  CAS  Google Scholar 

  17. Lipman M.L., Panda D., Bennett H.P., Henderson J.E., Shane E., Shen Y., Goltzman D., Karaplis A.C. Cloning of human PEX cDNA. Expression, subcellular localization, and endopeptidase activity. J. Biol. Chem. 273:13729–13737, 1998

    Article  PubMed  CAS  Google Scholar 

  18. Du L., Desbarats M., Viel J., Glorieux F.H., Cawthorn C., Ecarot B. cDNA cloning of the murine Pex gene implicated in X-linked hypophosphatemia and evidence for expression in bone. Genomics 36:22–28, 1996

    Article  PubMed  CAS  Google Scholar 

  19. Guo R., Quarles L.D. Cloning and sequencing of human PEX from a bone cDNA library: evidence for its developmental stage-specific regulation in osteoblasts. J. Bone Miner. Res. 12:1009–1017, 1997

    Article  PubMed  CAS  Google Scholar 

  20. Lajeunesse D., Meyer R.A. Jr., Hamel L. Direct demonstration of a humorally-mediated inhibition of renal phosphate transport in the Hyp mouse. Kidney Int. 50:1531–1538, 1996

    Article  PubMed  CAS  Google Scholar 

  21. Jonsson K.B., Zahradnik R., Larsson T., White K.E., Sugimoto T., Imanishi Y., Yamamoto T., Hampson G., Koshiyama H., Ljunggren O., Oba K., Yang I.M., Miyauchi A., Econs M.J., Lavigne J., Juppner H. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N. Engl. J. Med. 348:1656–1663, 2003

    Article  PubMed  CAS  Google Scholar 

  22. Strewler G.J. FGF23, hypophosphatemia, and rickets: has phosphatonin been found? Proc. Natl. Acad. Sci. USA 98:5945–5946, 2001

    Article  PubMed  CAS  Google Scholar 

  23. Benet-Pages A., Lorenz-Depiereux B., Zischka H., White K.E., Econs M.J., Strom T.M. FGF23 is processed by proprotein convertases but not by PHEX. Bone 35:455–462, 2004

    Article  PubMed  CAS  Google Scholar 

  24. Liu S., Guo R., Simpson L.G., Xiao Z.S., Burnham C.E., Quarles L.D. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J. Biol. Chem. 278:37419–37426, 2003

    Article  PubMed  CAS  Google Scholar 

  25. Eicher E.M., Southard J.L., Scriver C.R., Glorieux F.H. Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc. Natl. Acad. Sci. USA 73:4667–4671, 1976

    Article  PubMed  CAS  Google Scholar 

  26. Lyon M.F., Scriver C.R., Baker L.R., Tenenhouse H.S., Kronick J., Mandla S. The Gy mutation: another cause of X-linked hypophosphatemia in mouse. Proc. Natl. Acad. Sci. USA 83:4899–4903, 1986

    Article  PubMed  CAS  Google Scholar 

  27. Carpinelli M.R., Wicks I.P., Sims N.A., O’Donnell K., Hanzinikolas K., Burt R., Foote S.J., Bahlo M., Alexander W.S., Hilton D.J. An ethyl-nitrosourea-induced point mutation in phex causes exon skipping, x-linked hypophosphatemia, and rickets. Am. J. Pathol. 161:1925–1933, 2002

    PubMed  CAS  Google Scholar 

  28. Lorenz-Depiereux B., Guido V.E., Johnson K.R., Zheng Q.Y., Gagnon L.H., Bauschatz J.D., Davisson M.T., Washburn L.L., Donahue L.R., Strom T.M., Eicher E.M. New intragenic deletions in the Phex gene clarify X-linked hypophosphatemia-related abnormalities in mice. Mamm. Genome 15:151–161, 2004

    Article  PubMed  CAS  Google Scholar 

  29. He F., Wang Z., Zhao J., Bao J., Ding J., Ruan H.B. Large-scale screening of disease model through ENU mutagenesis in mice. Chin. Sci. Bull. 48:2665–2671, 2003

    Article  Google Scholar 

  30. Suzuki T., Fujikura K., Higashiyama T., Takata K. DNA staining for fluorescence and laser confocal microscopy. J. Histochem. Cytochem. 45:49–53, 1997

    PubMed  CAS  Google Scholar 

  31. Deng Y., Bennink J.R., Kang H.C., Haugland R.P., Yewdell J.W. Fluorescent conjugates of brefeldin A selectively stain the endoplasmic reticulum and Golgi complex of living cells. J. Histochem. Cytochem. 43:907–915, 1995

    PubMed  CAS  Google Scholar 

  32. Virtanen I., Ekblom P., Laurila P. Subcellular compartmentalization of saccharide moieties in cultured normal and malignant cells. J. Cell Biol. 85:429–434, 1980

    Article  PubMed  CAS  Google Scholar 

  33. Sabbagh Y., Boileau G., DesGroseillers L., Tenenhouse H.S. Disease-causing missense mutations in the PHEX gene interfere with membrane targeting of the recombinant protein. Hum. Mol. Genet. 10:1539–1546, 2001

    Article  PubMed  CAS  Google Scholar 

  34. Sabbagh Y., Gauthier C., Tenenhouse H.S. The X chromosome deletion in HYP mice extends into the intergenic region but does not include the SAT gene downstream from Phex. Cytogenet. Genome Res. 99:344–349, 2002

    Article  PubMed  CAS  Google Scholar 

  35. Lorenz B., Francis F., Gempel K., Boddrich A., Josten M., Schmahl W., Schmidt J., Lehrach H., Meitinger T., Strom T.M. Spermine deficiency in Gy mice caused by deletion of the spermine synthase gene. Hum. Mol. Genet. 7:541–547, 1998

    Article  PubMed  CAS  Google Scholar 

  36. Miao D., Bai X., Panda D.K., Karaplis A.C., Goltzman D., McKee M.D. Cartilage abnormalities are associated with abnormal Phex expression and with altered matrix protein and MMP-9 localization in Hyp mice. Bone 34:638–647, 2004

    Article  PubMed  CAS  Google Scholar 

  37. Sabbagh Y., Carpenter T.O., Demay M.B. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc. Natl. Acad. Sci. USA 102:9637–9642, 2005

    Article  PubMed  CAS  Google Scholar 

  38. Nesbitt T., Fujiwara I., Thomas R., Xiao Z.S., Quarles L.D., Drezner M.K. Coordinated maturational regulation of PHEX and renal phosphate transport inhibitory activity: evidence for the pathophysiological role of PHEX in X-linked hypophosphatemia. J. Bone Miner. Res. 14:2027–2035, 1999

    Article  PubMed  CAS  Google Scholar 

  39. Xiao Z.S., Crenshaw M., Guo R., Nesbitt T., Drezner M.K., Quarles L.D. Intrinsic mineralization defect in Hyp mouse osteoblasts. Am. J. Physiol. 275:E700–E708, 1998

    PubMed  CAS  Google Scholar 

  40. ADHR-Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26:345–348, 2000

    Article  CAS  Google Scholar 

  41. Rowe P.S., de Zoysa P.A., Dong R., Wang H.R., White K.E., Econs M.J., Oudet C.L. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics 67:54–68, 2000

    Article  PubMed  CAS  Google Scholar 

  42. Campos M., Couture C., Hirata I.Y., Juliano M.A., Loisel T.P., Crine P., Juliano L., Boileau G., Carmona A.K. Human recombinant endopeptidase PHEX has a strict S1’ specificity for acidic residues and cleaves peptides derived from fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein. Biochem. J. 373:271–279, 2003

    Article  PubMed  CAS  Google Scholar 

  43. Guo R., Rowe P.S., Liu S., Simpson L.G., Xiao Z.S., Quarles L.D. Inhibition of MEPE cleavage by Phex. Biochem. Biophys. Res. Commun. 297:38–45, 2002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jishuai Zhang of the Institute of Biotechnology for technical assistance, as well as Chen Liu of the Gulou Hospital for serum assays. We also thank Drs. Wen Ning and Jiong Chen for their careful review of this manuscript. This work was supported in part by E-Institutes of Shanghai Municipal Education Commission (E03003), Program for Changjiang Scholars and Innovative Research Team in University (IRT0430), and National 973 Projects (2005CB522501 and 2006CB943500) to Xiang Gao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, X., Qi, X., Ge, X. et al. A novel Phex mutation with defective glycosylation causes hypophosphatemia and rickets in mice. J Biomed Sci 15, 47–59 (2008). https://doi.org/10.1007/s11373-007-9199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-007-9199-6

Keywords

Navigation