Skip to main content
Log in

The vicissitudes of the pacemaker current I Kdd of cardiac purkinje fibers

  • Published:
Journal of Biomedical Science

Summary

The mechanisms underlying the pacemaker current in cardiac tissues is not agreed upon. The pacemaker potential in Purkinje fibers has been attributed to the decay of the potassium current I Kdd. An alternative proposal is that the hyperpolarization-activated current I f underlies the pacemaker potential in all cardiac pacemakers. The aim of this review is to retrace the experimental development related to the pacemaker mechanism in Purkinje fibers with reference to findings about the pacemaker mechanism in the SAN as warranted. Experimental data and their interpretation are critically reviewed. Major findings were attributed to K+ depletion in narrow extracellular spaces which would result in a time dependent decay of the inward rectifier current I K1. In turn, this decay would be responsible for a “fake” reversal of the pacemaker current. In order to avoid such a postulated depletion, Ba2+ was used to block the decay of I K1. In the presence of Ba2+ the time-dependent current no longer reversed and instead increased with time and more so at potentials as negative as −120 mV. In this regard, the distinct possibility needs to be considered that Ba2+ had blocked I Kdd (and not only I K1). That indeed this was the case was demonstrated by studying single Purkinje cells in the absence and in the presence of Ba2+. In the absence of Ba2+, I Kdd was present in the pacemaker potential range and reversed at E K. In the presence of Ba2+, I Kdd was blocked and I f appeared at potentials negative to the pacemaker range. The pacemaker potential behaves in a manner consistent with the underlying I Kdd but not with I f. The fact that I f is activated on hyperpolarization at potential negative to the pacemaker range makes it suitable as a safety factor to prevent the inhibitory action of more negative potentials on pacemaker discharge. It is concluded that the large body of evidence reviewed proves the pacemaker role of I Kdd (but not of I f) in Purkinje fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vassalle M., Analysis of cardiac pacemaker potential using a “voltage clamp” technique. Am. J. Physiol. 210:1335–1341, 1966

    PubMed  CAS  Google Scholar 

  2. Vassalle M., Yu H., Cohen I.S., The pacemaker current in cardiac Purkinje myocytes. J. Gen. Physiol. 106:559–578, 1995

    PubMed  CAS  Google Scholar 

  3. DiFrancesco D., A new interpretation of the pace-maker current in calf Purkinje fibres. J. Physiol. (Lond.) 314:359–376, 1981.

    CAS  Google Scholar 

  4. DiFrancesco D., A study of the ionic nature of the pace-maker current in calf Purkinje fibres. J. Physiol. (Lond.) 314:377–393, 1981.

    CAS  Google Scholar 

  5. DiFrancesco D., Funny channels in the control of cardiac rhythm and mode of action of selective blockers. Pharmacol. Res.. 53:399–406, 2006.

    PubMed  CAS  Google Scholar 

  6. Noble D., The surprising heart: a review of recent progress in cardiac electrophysiology. J. Physiol. (Lond.) 353:1–50, 1984

    CAS  Google Scholar 

  7. Brown H.F., Electrophysiology of the sinoatrial node. Physiol. Rev. 62:505–530, 1982

    PubMed  CAS  Google Scholar 

  8. Irisawa H., Brown H.F., Giles W., Cardiac pacemaking in the sinoatrial node. Physiol. Rev. 73:197–227, 1993

    PubMed  CAS  Google Scholar 

  9. Vassalle M., Yu H., Cohen I.S., Pacemaker channels and cardiac automaticity. In: Zipes D.P., Jalife J. (Eds), Cardiac Electrophysiology. From Cell to Bedside. WB Saunders Company, Philadelphia, 1999, pp. 94–103.

    Google Scholar 

  10. DiFrancesco D., Pacemaker mechanisms in cardiac tissue. Annu. Rev. Physiol. 55:455–472, 1993

    PubMed  CAS  Google Scholar 

  11. Vassalle M., Mechanisms underlying cardiac pacemaker activity. J. Med. Sci. 23:249–264, 2003

    Google Scholar 

  12. DiFrancesco D., Serious workings of the funny current. Prog. Biophys. Mol. Biol. 90:13–25, 2006.

    PubMed  CAS  Google Scholar 

  13. Weidmann S., Effect of current flow on the membrane potential of cardiac muscle. J. Physiol. (Lond.) 115:227–236, 1951

    CAS  Google Scholar 

  14. Hutter O.F., Noble D., Rectifying properties of cardiac muscle. Nature (Lond.) 188:495, 1960

    CAS  Google Scholar 

  15. Hall A.E., Hutter O.F., Noble D., Current-voltage relations of Purkinje fibres in sodium-deficient solutions. J. Physiol. (Lond.) 166:225–240, 1963

    CAS  Google Scholar 

  16. Vassalle M., Cardiac pacemaker potentials at different extra- and intracellular K concentrations. Am. J. Physiol. 208:770–775, 1965

    PubMed  CAS  Google Scholar 

  17. Carmeliet E.E., Chloride and potassium permeability in cardiac Purkinje fibres. Arscia S.A. and Presses Académiques Européennes, Bruxelles, 1961

    Google Scholar 

  18. Trautwein W., Kassebaum D.G., On the mechanism of spontaneous impulse generation in the pacemaker of the heart. J. Gen. Physiol. 45:317–330, 1961

    PubMed  CAS  Google Scholar 

  19. Noble D., Tsien R.W., The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J. Physiol. (Lond.) 195:185–214, 1968

    CAS  Google Scholar 

  20. Peper K., Trautwein W., A note on the pacemaker current in Purkinje fibres. Pflügers Arch. 309:356–361, 1969

    PubMed  CAS  Google Scholar 

  21. Cohen I.S., Daut J., Noble D., The effects of potassium and temperature on pace-maker current, iK2, in Purkinje fibres. J. Physiol. (Lond.) 260:55–74, 1976

    CAS  Google Scholar 

  22. Seyama I., Characteristics of the rectifying properties of the sino-atrial node cell of the rabbit. J. Physiol. (Lond.) 255:379–397, 1976

    CAS  Google Scholar 

  23. Noma A., Irisawa H., Membrane currents in the rabbit sinoatrial node cell as studied by the double microelectrode method. Pflügers Arch. 364:45–52, 1976

    PubMed  CAS  Google Scholar 

  24. Brown H.F., Giles W.R., Noble S.J., Membrane currents underlying activity in frog sinus venosus. J. Physiol. (Lond.) 271:783–816, 1977

    CAS  Google Scholar 

  25. Seyama I., Characteristics of the anion channel in the sino-atrial node cell of the rabbit. J. Physiol. (Lond.) 294:447–460, 1979

    CAS  Google Scholar 

  26. Brown H.F., DiFrancesco D., Noble S.J., How does adrenaline accelerate the heart? Nature 280:235–236, 1979

    PubMed  CAS  Google Scholar 

  27. DiFrancesco D., Ojeda C., Properties of the current if in the sino-atrial node of the rabbit compared with those of the current iK, in Purkinje fibres. J. Physiol. (Lond.) 308:353–367, 1980.

    CAS  Google Scholar 

  28. Noma A., Kotake H., Irisawa H., Slow inward current and its role mediating the chronotropic effect of epinephrine in the rabbit sinoatrial node. Pflügers Arch. 388:1–9, 1980.

    PubMed  CAS  Google Scholar 

  29. Yanagihara K., Irisawa, H., Inward current activated during hyperpolarization in the rabbit sinoatrial node cell. Pflügers Arch. 385:11–19, 1980

    PubMed  CAS  Google Scholar 

  30. Yanagihara K., Irisawa H., Potassium current during the pacemaker depolarization in rabbit sinoatrial node cell. Pflügers Arch. 388:255–260, 1980.

    PubMed  CAS  Google Scholar 

  31. Brown H.F., DiFrancesco D., Voltage-clamp investigations of membrane currents underlying pace-maker activity in the rabbit sino-atrial node. J. Physiol. (Lond.) 308:331–351, 1980.

    CAS  Google Scholar 

  32. Hauswirth O., Noble D., Tsien R.W., Adrenaline: mechanism of action on the pacemaker potential in cardiac Purkinje fibers. Science 162:916–917, 1968

    PubMed  CAS  Google Scholar 

  33. McAllister R.E., Noble D., The time and voltage dependence of the slow outward current in cardiac Purkinje fibres. J. Physiol. (Lond.) 195:632–662, 1966

    Google Scholar 

  34. Isenberg G., Cardiac Purkinje fibers: cesium as a tool to block inward rectifying potassium currents. Pflügers Arch. 365:99–106, 1976

    PubMed  CAS  Google Scholar 

  35. Noma A., Morad M., Irisawa H., Does the “pacemaker current” generate diastolic depolarization in the rabbit SA node cells? Pflügers Arch. 397:190–194, 1983.

    PubMed  CAS  Google Scholar 

  36. Baumgarten C.M., Isenberg G., Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibers during voltage clamp hyperpolarization and depolarization. Pflügers Arch. 386:19–31, 1977

    Google Scholar 

  37. Baumgarten C.M., Isenberg G., McDonald TF, Ten Eick RE. Depletion and accumulation of potassium in the extracellular cleft of cardiac Purkinje fibers during voltage clamp hyperpolarization and depolarization. Experiments in sodium-free bathing media. J. Gen. Physiol. 60:588–608, 1977

    Google Scholar 

  38. Cohen I.S., Falk R.T., Mulrine N.K., Actions of barium and rubidium on membrane currents in canine Purkinje fibres. J. Physiol. (Lond.) 338:589–612, 1983.

    CAS  Google Scholar 

  39. DiFrancesco D., Noble D., The influence of voltage non-uniformity on the determination of Erev for iK2. J. Physiol. (Lond.) 297:158–162, 1979.

    CAS  Google Scholar 

  40. Draper M.H., Weidmann S., Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol. (Lond.) 115:74–94, 1951.

    CAS  Google Scholar 

  41. DiFrancesco D., Noble D., A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos. Trans. R. Soc. Lond. (B) 307:353–398, 1985.

    CAS  Google Scholar 

  42. Ishikawa S., Vassalle M., Different forms of spontaneous discharge induced by strophanthidin in cardiac Purkinje fibers. Am. J. Physiol. 243:H767–H778, 1982

    PubMed  CAS  Google Scholar 

  43. Callewaert G., Carmeliet E., Veerecke J., Single cardiac Purkinje cells: general electrophysiology and voltage-clamp analysis of the pace-maker current. J. Physiol. (Lond.) 349:643–661, 1984

    CAS  Google Scholar 

  44. Sakmann B., Trube G., Voltage-dependent inactivation of inward-rectifying single-channel currents in the guinea-pig heart cell membrane. J. Physiol. (Lond.) 347;659–683, 1984.

    CAS  Google Scholar 

  45. Craven K.B., Zagotta W.N., CNG and HCN channels: two peas, one pod. Annu. Rev. Physiol. 68:375–401, 2006

    PubMed  CAS  Google Scholar 

  46. DiFrancesco D., Tromba C., Muscarinic control of the hyperpolarization-activated current (if) in the rabbit sino-atrial myocytes. J. Physiol. (Lond.) 405:477–491, 1988.

    CAS  Google Scholar 

  47. Brown H., DiFrancesco D., Noble S., Cardiac pacemaker oscillation and its modulation by autonomic transmitters. J. Exp. Biol. 81:175–204, 1979.

    PubMed  CAS  Google Scholar 

  48. Yu H., Chang F., Cohen I.S., Pacemaker current exists in ventricular myocytes. Circ. Res. 72:232–236, 1993

    PubMed  CAS  Google Scholar 

  49. Zhang H., Vassalle M., Role of IK and If in the pacemaker mechanisms of sino-atrial node myocytes. Can. J. Physiol. Pharmacol. 79:963–976, 2001

    PubMed  CAS  Google Scholar 

  50. DiFrancesco D., Ferroni A., Delayed activation of the cardiac pacemaker current and its dependence on conditioning pre-hyperpolarizations. Pflügers Arch. 396:265–267, 1983

    PubMed  CAS  Google Scholar 

  51. Sternlicht J.P., Vassalle M., Cesium, Na+-K+ pump and pacemaker potential in cardiac Purkinje fibers. J. Biomed. Sci. 2:366–378, 1995

    PubMed  CAS  Google Scholar 

  52. Liu Y.M., Yu H., Li C.-Z., Cohen I.S., Vassalle M., Cs+ effects on if and iK in rabbit sinoatrial node myocytes: implications for SA node automaticity. J. Cardiovasc. Pharmacol. 32:783–790, 1998

    PubMed  CAS  Google Scholar 

  53. Sohn H.G., Vassalle M., Cesium effects on dual pacemaker mechanisms in guinea pig sinoatrial node. J. Mol. Cell. Cardiol. 27:563–577, 1995

    PubMed  CAS  Google Scholar 

  54. Hauswirth O., Noble D., Tsien R.W., The mechanism of oscillatory activity at low membrane potentials in cardiac Purkinje fibres. J. Physiol. (Lond.) 200:255–265, 1969

    CAS  Google Scholar 

  55. Vassalle M., Kotake H., Lin C.-I., Pacemaker current, membrane resistance, and K+ in sheep cardiac Purkinje fibres. Cardiovasc. Res. 26:383–391, 1992.

    PubMed  CAS  Google Scholar 

  56. Mugelli A., Separation of the oscillatory current from other currents in cardiac Purkinje fibres. Cardiovasc. Res. 16:637–645, 1982

    PubMed  CAS  Google Scholar 

  57. Nett M.P., Vassalle M., Obligatory role of diastolic voltage oscillations in sino-atrial node discharge. J. Mol. Cell. Cardiol. 35:1257–1276, 2003

    PubMed  CAS  Google Scholar 

  58. Kim E.M., Choy Y., Vassalle M., Mechanisms of suppression and initiation of pacemaker activity in guinea-pig sino-atrial node superfused in high [K+]o. J. Mol. Cell Cardiol. 29:1433–1445, 1997.

    PubMed  CAS  Google Scholar 

  59. Choy Y., Kim E.M., Vassalle M., Overdrive excitation in the guinea pig sino-atrial node superfused in high [K+]o. J. Biomed. Sci. 4:179–191, 1997

    PubMed  Google Scholar 

  60. Catanzaro J.N., Nett M.P., Rota M., Vassalle M., On the mechanisms underlying diastolic voltage oscillations in the sino-atrial node. J. Electrocardiol. 39:342.e1–342.e14, 2006.

    Google Scholar 

  61. Spiegler P., Vassalle M., Role of voltage oscillations in the automaticity of sheep cardiac Purkinje fibers. Can. J. Physiol. Pharmacol. 73:1165–1180, 1995.

    PubMed  CAS  Google Scholar 

  62. Noma A., Mechanisms underlying cessation of rabbit sinoatrial node pacemaker activity in high potassium solutions. Jap. J. Physiol. 26:619–630, 1976

    CAS  Google Scholar 

  63. Farès N., Bois P., Lenfant J., Potreau D., Characterization of a hyperpolarization-activated current in dedifferentiated adult rat ventricular cells in primary culture. J. Physiol. (Lond.) 506, 73–82, 1998.

    Google Scholar 

  64. Valenzuela F., Vassalle M., Role of membrane potential in Ba2+-induced automaticity in guinea pig cardiac myocytes. Cardiovasc. Res. 25:421–430, 1991

    Article  PubMed  CAS  Google Scholar 

  65. Shen J.-B., Vassalle M., Cesium abolishes the barium-induced pacemaker potential and current in guinea pig ventricular myocytes. J. Cardiovasc. Electrophysiol. 5:1031–1044, 1994

    PubMed  CAS  Google Scholar 

  66. Iacono G., Vassalle M., The interrelationship of cesium, intracellular sodium activity, and pacemaker potential in cardiac Purkinje fibers. Can. J. Physiol. Pharmacol. 68:1236–1246, 1990

    PubMed  CAS  Google Scholar 

  67. Carmeliet E.E., Decrease in K efflux and influx by external Cs ions in cardiac Purkinje and muscle cells. Pflügers Arch. 383:143–150, 1980

    CAS  Google Scholar 

  68. Eisner D.A., Lederer W.J., Characterization of the electrogenic sodium pump in cardiac Purkinje fibres. J. Physiol. (Lond.) 303:441–474, 1980

    CAS  Google Scholar 

  69. Vassalle M., Tamargo J., An analysis of calcium effects on diastolic depolarization in sheep cardiac Purkinje fibers. J. Physiol. (Paris) 85:27–37, 1991

    CAS  Google Scholar 

  70. Chae S.W., Wang D.Y., Gong Q.Y., Lee C.O., Effect of norepinephrine on Na+-K+ pump and Na+ influx in sheep cardiac Purkinje fibers. Am. J. Physiol. 258:C713–C722, 1990

    PubMed  CAS  Google Scholar 

  71. Glitsch H.G., Pusch H., Verdonck F., The contribution of Na and K ions to the pacemaker current in sheep cardiac Purkinje fibres. Pflügers Arch. 406:464–471, 1986.

    PubMed  CAS  Google Scholar 

  72. DiFrancesco D., Ferroni A., Visentin S., Barium-induced blockade of the inward rectifier in calf Purkinje fibres. Pflügers Arch. 402:446–453, 1984

    PubMed  CAS  Google Scholar 

  73. Cohen I.S., Falk R.T., The pace-maker current in canine Purkinje fibres. J. Physiol. (Lond.) 308:30P–31P, 1980 (Abstract)

    Google Scholar 

  74. Hart G., The kinetics and temperature dependence of the pace-maker current, if, in sheep Purkinje fibres. J. Physiol. (Lond.) 337:401–416, 1983.

    CAS  Google Scholar 

  75. DiFrancesco D., Characterization of the pace-maker current kinetics in calf Purkinje fibres. J. Physiol. (Lond.) 348:341–367, 1984

    CAS  Google Scholar 

  76. McAllister R.E., Noble D., Tsien R.W., Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol. (Lond) 251:1–59, 1975

    CAS  Google Scholar 

  77. Brown H.F., Kimura J., Noble S., The relative contributions of the various time-dependent membrane currents to pacemaker activity in the sino-atrial node. In: Bouman L.N., Jongsma H.J. (Eds), Cardiac Rate and Rhythm. Nijhoff, The Hague, 1982, pp. 53–68

    Google Scholar 

  78. Santoro B., Grant S.G., Bartsch D., Kandel E.R., Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels. Proc. Natl. Acad. Sci. U.S.A. 94:14815–14820, 1997

    PubMed  CAS  Google Scholar 

  79. Pape H.-C., Queer current and the pacemaker: hyperpolarization-activated cation current in neurones. Ann. Rev. Physiol. 58:299–327, 1996

    CAS  Google Scholar 

  80. Santoro B., Tibbs G.R., The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann N. Y. Acad. Sci. 868:741–764, 1999

    PubMed  CAS  Google Scholar 

  81. Cohen I.S., Robinson R.B., Pacemaker current and automatic rhythms: toward a molecular understanding. Handb. Exp. Pharmacol. 171:41–71, 2005

    Google Scholar 

  82. Zagotta W.N., Siegelbaum S.A., Structure and function of cyclic nucleotide-gated channels. Annu. Rev. Neurosci. 19:235–263, 1996

    PubMed  CAS  Google Scholar 

  83. Kaupp U.B., Seifert R., Cyclic nucleotide-gated ion channels. Physiol. Rev. 82:769–824, 2002.

    PubMed  CAS  Google Scholar 

  84. Biel M., Schneider A., Wahl C., Cardiac HCN channels: structure, function, and modulation. Trends Cardiovasc. Med. 12:206–212, 2002.

    PubMed  CAS  Google Scholar 

  85. Accili E.A., Proenza C., Baruscotti M., DiFrancesco D., From funny current to HCN channels: 20 years of excitation. News Physiol. Sci. 17:32–37, 2003.

    Google Scholar 

  86. Matulef K., Zagotta W.N., Cyclic nucleotide-gated ion channels. Annu. Rev. Cell Dev. Biol. 19:23–44, 2003.

    PubMed  CAS  Google Scholar 

  87. Robinson R.B., Siegelbaum S.A., Hyperpolarization-activated cation currents: from molecules to physiological function. Annu. Rev. Physiol. 65:453–480, 2003

    PubMed  CAS  Google Scholar 

  88. Baruscotti M., DiFrancesco D., Pacemaker channels. Ann. N.Y. Acad. Sci. 1015:111–121, 2004

    PubMed  Google Scholar 

  89. Hofmann F., Biel M., Kaupp U.B., International Union of Pharmacology. LI. Nomenclature and structure-function relationships of cyclic nucleotide-regulated channels. Pharmacol. Rev. 57:455–462, 2005

    PubMed  CAS  Google Scholar 

  90. Baruscotti M., Bucchi A., DiFrancesco D., Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol. Ther. 107:59–79, 2005

    PubMed  CAS  Google Scholar 

  91. Santoro B., Liu D.T., Yao H., Bartsch D., Kandel E.R., Siegelbaum S.A., Tibbs G.R., Identification of a gene encoding a hyperpolarizationactivated pacemaker channel of brain. Cell 93:717–729, 1998.

    PubMed  CAS  Google Scholar 

  92. Ludwig A., Zong X., Jeglitsch M., Hofmann F., Biel M., A family of hyperpolarization-activated mammalian cation channels. Nature 393:587– 591, 1998.

    PubMed  CAS  Google Scholar 

  93. Ishii T.M., Takano M., Xie L.-H., Noma A., Ohmori H., Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node. J. Biol. Chem. 274:12835–12839, 1999.

    PubMed  CAS  Google Scholar 

  94. Seifert R., Scholten A., Gauss R., Mincheva A., Lichter P., Kaupp U.B., Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc. Natl. Acad. Sci. U.S.A. 96:9391–9396, 1999.

    PubMed  CAS  Google Scholar 

  95. Moosmang S., Stieber J., Zong X., Biel M., Hofmann F., Ludwig A., Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur. J. Biochem. 268:1646–1652, 2001.

    PubMed  CAS  Google Scholar 

  96. Moosmang S., Biel M., Hofmann F., Ludwig A., Differential distribution of four hyperpolarization-activated cation channels in mouse brain. Biol. Chem. 380:975–980, 1999

    PubMed  CAS  Google Scholar 

  97. Santoro B., Chen S., Luthi A., Pavlidis P., Shumyatsky G.P., Tibbs G.R., Siegelbaum S.A., Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J. Neurosci. 20:5264–5275, 2000

    PubMed  CAS  Google Scholar 

  98. Notomi T., Shigemoto R., Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J. Comp. Neurol. 471:241–276, 2004

    PubMed  CAS  Google Scholar 

  99. Shi W., Wymore R., Yu H., Wu J., Wymore R.T., Pan Z., Robinson R.B., Dixon J.E., McKinnon D., Cohen I.S., Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ. Res. 85:E1–E6, 1999.

    PubMed  CAS  Google Scholar 

  100. Moroni A., Gorza L., Beltrame M., Gravante B., Vaccari T., Bianchi M.E., Altomare C., Longhi R., Heurteaux C., Vitadello M., Malgaroli A., DiFrancesco D., Hyperpolarization-activated cyclic nucleotide-gated channel is a molecular determinant of the cardiac pacemaker current If. J. Biol. Chem. 276:29233–29241, 2001

    PubMed  CAS  Google Scholar 

  101. Han W., Bao W., Wang Z., Nattel S., Comparison of ion-channel subunit expression in canine cardiac Purkinje fibers and ventricular muscle. Circ. Res. 91:790–797, 2002.

    PubMed  CAS  Google Scholar 

  102. Zicha S., Fernández-Velasco M., Lonardo G., L’Heureux N., Nattel S., Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc. Res. 66:472–481, 2005

    PubMed  CAS  Google Scholar 

  103. Grafe P., Quasthoff S., Grosskreutz J., Alzheimer C., Function of the hyperpolarization-activated inward rectification in nonmyelinated peripheral rat and human axons. J. Neurophysiol. 77:421–426, 1997.

    PubMed  CAS  Google Scholar 

  104. Demontis G.C., Longoni B., Barcaro U., Cervetto L., Properties and functional roles of hyperpolarization-gated currents in guinea-pig retinal rods. J. Physiol. (Lond.) 515:813–828, 1999

    CAS  Google Scholar 

  105. Beaumont V., Zucker R.S., Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels. Nat. Neurosci. 3:133–141, 2000.

    PubMed  CAS  Google Scholar 

  106. Mellor J., Nicoll R.A., Schmitz D., Mediation of hippocampal mossy fiber long-term potentiation by presynaptic Ih channels. Science 295:143–147, 2002

    PubMed  CAS  Google Scholar 

  107. Stevens D.R., Seifert R., Bufe B., Muller F., Kremmer E., Gauss R., Meyerhof W., Kaupp U.B., Lindemann B., Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature 413:631–635, 2001

    PubMed  CAS  Google Scholar 

  108. Fain G.L., Quandt FN, Bastian BL, Gerschenfeld HM. Contribution of a caesium-sensitive conductance increase to the rod photoresponse. Nature 272:466–469, 1978

    PubMed  CAS  Google Scholar 

  109. Altomare C., Terragni B., Brioschi C., Milanesi R., Pagliuca C., Viscomi C., Moroni A., Baruscotti M., DiFrancesco D., Heteromeric HCN1-HCN4 channels: a comparison with native pacemaker channels from the rabbit sinoatrial node. J. Physiol. (Lond.) 549:347–359, 2003.

    CAS  Google Scholar 

  110. Ludwig A., Zong X., Stieber J., Hullin R., Hofmann F., Biel M., Two pacemaker channels from human heart with profoundly different activation kinetics. EMBO J. 18:2323–2329, 1999.

    PubMed  CAS  Google Scholar 

  111. Kaupp U.B., Seifert R. Molecular diversity of pacemaker ion channels. Annu. Rev. Physiol. 63:235–257, 2001

    PubMed  CAS  Google Scholar 

  112. Altomare C., Bucchi A., Camatini E., Baruscotti M., Viscomi C., Moroni A., DiFrancesco D., Integrated allosteric model of voltage gating of HCN channels. J. Gen. Physiol. 117:519–532, 2001

    PubMed  CAS  Google Scholar 

  113. DiFrancesco D., Tortora P., Direct activation of cardiac pacemaker channelsby intracellular cyclic AMP. Nature 351:145–147, 1991

    PubMed  CAS  Google Scholar 

  114. DiFrancesco D., Mangoni M., Modulation of single hyperpolarization-activated channels (i(f)) by cAMP in the rabbit sino-atrial node. J. Physiol. 474:473–482, 1994.

    PubMed  CAS  Google Scholar 

  115. Bois P., Renaudon B., Baruscotti M., Lenfant J., DiFrancesco D., Activation of f-channels by cAMP analogues in macropatches from rabbit sino-atrial node myocytes. J. Physiol. (Lond.) 501:565–571, 1997

    CAS  Google Scholar 

  116. Baker K., Warren K.S., Yellen G., Fishman M.C., Defective ‹pacemaker’ current (Ih) in a zebrafish mutant with a slow heart rate. Proc. Natl. Acad. Sci. U.S.A. 94:4554–4559, 1997.

    PubMed  CAS  Google Scholar 

  117. Cerbai E., Barbieri M., Mugelli A., Occurrence and properties of the hyperpolarization-activated current If in ventricular myocytes from normotensive and hypertensive rats during aging. Circulation 94:1674–1681, 1996

    PubMed  CAS  Google Scholar 

  118. Hoppe U.C., Jansen E., Südkamp M., Beuckelmann D.J., Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation 97:55–65, 1998.

    PubMed  CAS  Google Scholar 

  119. Vaccari T., Moroni A., Rocchi M., Gorza L., Bianchi M.E., Beltrame M., DiFrancesco D., The human gene coding for HCN2, a pacemaker channel of the heart. Biochim. Biophys. Acta. 1446:419–425, 1999

    PubMed  CAS  Google Scholar 

  120. Qu J., Plotnikov, A.N., Danilo Jr. P., Shlapakova I., Cohen I.S., Robinson R.B., Rosen M.R., Expression and function of a biological pacemaker in canine heart. Circulation 107:1106–1109, 2003

    PubMed  Google Scholar 

  121. Wang J., Chen S., Siegelbaum S.A., Regulation of hyperpolarization-activated HCN channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions. J. Gen. Physiol. 118:237–250, 2001.

    PubMed  CAS  Google Scholar 

  122. Craven K.B., Zagotta W.N., Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels. J. Gen. Physiol. 124:663–677, 2004

    PubMed  CAS  Google Scholar 

  123. Zhou L., Olivier N.B., Yao H., Young E.C., Siegelbaum S.A., A conserved tripeptide in CNG and HCN channels regulates ligand gating by controlling C-terminal oligomerization. Neuron 2004 44:823–834, 2004.

    CAS  Google Scholar 

  124. BoSmith R.E., Briggs I., Sturgess N.C., Inhibitory actions of ZENECA ZD7288 on whole-cell hyperpolarization activated inward current (If) in guinea-pig dissociated sinoatrial node cells. Br. J. Pharmacol. 110:343–349, 1993.

    PubMed  CAS  Google Scholar 

  125. Doerr T., Trautwein W., On the mechanism of the “specific bradycardic action” of the verapamil derivative UL-FS 49. Naunyn-Schmiedebergs Arch Pharmacol 341:331–340, 1990

    PubMed  CAS  Google Scholar 

  126. Valenzuela C., Delpon E., Franqueza L., Gay P., Perez O., Tamargo J., Snyders D.J., Class III antiarrhythmic effects of zatebradine. Time-, state-, use-, and voltage-dependent block of hKv1.5 channels. Circulation 94:562–570, 1996

    PubMed  CAS  Google Scholar 

  127. Chen C., ZD7288 inhibits postsynaptic glutamate receptor-mediated responses at hippocampal perforant path-granule cell synapses. Eur. J. Neurosci. 19:643–649, 2004

    PubMed  Google Scholar 

  128. Bucchi A., Baruscotti M., DiFrancesco D., Current-dependent block of rabbit sino-atrial node If channels by ivabradine. J. Gen. Physiol. 120:1–13, 2002.

    PubMed  CAS  Google Scholar 

  129. Stieber J., Herrmann S., Feil S., Loster J., Feil R., Biel M., Hofmann F., Ludwig A., The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc. Natl. Acad. Sci. U.S.A. 100:15235–15240, 2003

    PubMed  CAS  Google Scholar 

  130. Lei M., Goddard C., Liu J., Leoni A.L., Royer A., Fung S.S., Xiao G., Ma A., Zhang H., Charpentier F., Vandenberg J.I., Colledge W.H., Grace A.A., Huang C.L., Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene Scn5a. J. Physiol. 567:387–400, 2005.

    PubMed  CAS  Google Scholar 

  131. Platzer J., Engel J., Schrott-Fischer A., Stephan K., Bova S., Chen H., Zheng H., Striessnig J., Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97, 2000

    PubMed  CAS  Google Scholar 

  132. Zhang Z., Xu Y., Song H., Rodriguez J., Tuteja D., Namkung Y., Shin H.S., Chiamvimonvat N., Functional Roles of Ca(v)1.3 (alpha(1D)) calcium channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. Circ. Res. 90:981–987, 2002

    PubMed  CAS  Google Scholar 

  133. Mangoni M.E., Traboulsie A., Leoni A.L., Couette B., Marger L., Le Quang K., Kupfer E., Cohen-Solal A., Vilar J., Shin H.S., Escande D., Charpentier F., Nargeot J., Lory P., Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ. Res. 98:1422–1430, 2006

    PubMed  CAS  Google Scholar 

  134. Earm Y.E., Shimoni Y., Spindler A.J., A pace-maker-like current in the sheep atrium and its modulation by catecholamines. J. Physiol. (London) 342:569–590, 1983

    CAS  Google Scholar 

  135. Porciatti F., Pelzmann B., Cerbai E., Schaffer P., Pino R., Bernhart E., Koidl B., Mugelli A., The pacemaker current I(f) in single human atrial myocytes and the effect of beta-adrenoceptor and A1-adenosine receptor stimulation. Br. J. Pharmacol. 122:963–969, 1997

    PubMed  CAS  Google Scholar 

  136. Zhang H., Vassalle M., On the mechanisms of adrenergic control of the sino-atrial node discharge. J. Biomed. Sci. 10:179–192, 2003

    PubMed  CAS  Google Scholar 

  137. Copen D.L., Cirillo D.P., Vassalle M., Tachycardia following vagal stimulation. Am. J. Physiol. 215:696–703, 1968

    PubMed  CAS  Google Scholar 

  138. Vassalle M., Electrogenic suppression of automaticity in sheep and dog Purkinje fibers. Circ. Res. 27:361–377, 1970

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in author’s laboratory was supported by grants from N.I.H. and the American Heart Association, New York Affiliate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Vassalle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassalle, M. The vicissitudes of the pacemaker current I Kdd of cardiac purkinje fibers. J Biomed Sci 14, 699–716 (2007). https://doi.org/10.1007/s11373-007-9182-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-007-9182-2

Keywords

Navigation