Skip to main content

Advertisement

Log in

Tying SUMO modifications to dynamic behaviors of chromosomes during meiotic prophase of Saccharomyces cerevisiae

  • Published:
Journal of Biomedical Science

Summary

In budding yeast Saccharomyces cerevisiae, centromeres and telomeres are tethered to the nuclear envelope during premeiotic interphase. Immediately after cells enter meiotic prophase, chromosomes undergo global reorganization, including bouquet formation (telomere clustering), non-homologous centromere coupling, homologous pairing, and assembly/disassembly of synaptonemal complexes. These chromosome dynamics have been implicated in promoting pairing, synapsis, crossover DNA recombination and segregation between homologous chromosomes. This review discusses recent studies related to the role of small ubiquitin-like modifier (SUMO) modification in controlling the overall budding yeast chromosome dynamics during meiotic prophase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zickler D., Kleckner N., 1998 The leptotene-zygotene transition of meiosis. Annu. Rev. Genet. 32: 619–97

    Article  PubMed  CAS  Google Scholar 

  2. Zickler D., Kleckner N., 1999 Meiotic chromosomes: Integrating structure and function. Annu. Rev. Genet. 33: 603–754

    Article  PubMed  CAS  Google Scholar 

  3. Scherthan H., 2001 A bouquet makes ends meet. Nat. Rev. Mol. Cell Biol. 2: 621–7

    Article  PubMed  CAS  Google Scholar 

  4. Petronczki M., Siomos M.F., Nasmyth K., 2003 Un menage a quatre: The molecular biology of chromosome segregation in meiosis. Cell 112: 423–440

    Article  PubMed  CAS  Google Scholar 

  5. Hassold T., Hunt P., 2001 To err (meiotically) is human: The genesis of human aneuploidy. Nat. Rev. Genet. 2: 280–291

    Article  PubMed  CAS  Google Scholar 

  6. Burgess S.M., 2002 Homologous chromosome associations and nuclear order in meiotic and mitotically dividing cells of budding yeast. Adv. Genet. 46: 49–90

    Article  PubMed  CAS  Google Scholar 

  7. Loidl J., 2003 Chromosomes of the budding yeast Saccharomyces cerevisiae. Int. Rev. Cytol. 222: 141–196

    PubMed  Google Scholar 

  8. Straight A.F., Marshall W.F., Sedat J.W., Murray A.W., 1997 Mitosis in living budding yeast: Anaphase A but no metaphase plate. Science 277: 574–578

    Article  PubMed  CAS  Google Scholar 

  9. Goshima G., Yanagida M., 2001 Time course analysis of precocious separation of sister centromeres in budding yeast: Continuously separated or frequently reassociated? Genes Cells 6: 765–773

    Article  PubMed  CAS  Google Scholar 

  10. He X., Asthana S., Sorger P.K., 2000 Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101: 763–775

    Article  PubMed  CAS  Google Scholar 

  11. Heun P., Taddei A., Gasser S.M., 2001 From snapshots to moving pictures: New perspectives on nuclear organization. Trends Cell Biol. 11: 519–525

    Article  PubMed  CAS  Google Scholar 

  12. Burgess S.M., Kleckner N., Weiner B.M., 1999 Somatic pairing of homologs in budding yeast: Existence and modulation. Genes Dev. 13: 1627–1641

    PubMed  CAS  Google Scholar 

  13. Dekker J., Rippe K., Dekker M., Kleckner N., 2002 Capturing chromosome conformation. Science 295: 1306–1311

    Article  PubMed  CAS  Google Scholar 

  14. Keeney S., Giroux C.N., Kleckner N., 1997 Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88: 375–384

    Article  PubMed  CAS  Google Scholar 

  15. Bishop D.K., 1994 RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79: 1081–1092

    Article  PubMed  CAS  Google Scholar 

  16. Rockmill B., Sym M., Scherthan H., Roeder G.S., 1995 Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev. 9: 2684–2695

    Article  PubMed  CAS  Google Scholar 

  17. Gasior S.L., Wong A.K., Kora Y., Shinohara A., Bishop D.K., 1998 Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes. Genes Dev 12: 2208–2221

    PubMed  CAS  Google Scholar 

  18. Leu J.Y., Chua P.R., Roeder G.S., 1998 The meiosis-specific Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell 94: 375–386

    Article  PubMed  CAS  Google Scholar 

  19. Tsubouchi H., Roeder G.S., 2002 The Mnd1 protein forms a complex with hop2 to promote homologous chromosome pairing and meiotic double-strand break repair. Mol. Cell Biol. 22: 3078–3088

    Article  PubMed  CAS  Google Scholar 

  20. Peoples T.L., Dean E., Gonzalez O., Lambourne L., Burgess S.M., 2002 Close, stable homolog juxtaposition during meiosis in budding yeast is dependent on meiotic recombination, occurs independently of synapsis, and is distinct from DSB-independent pairing contacts. Genes Dev. 16: 1682–1695

    Article  PubMed  CAS  Google Scholar 

  21. Chen Y.K., Leng C.H., Olivares H., Lee M.H., Chang Y.C., Kung W.M., Ti S.C., Lo Y.H., Wang A.H., Chang C.S., Bishop D.K., Hsueh Y.P., Wang T.F., 2004 Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation. Proc Natl Acad Sci USA 101: 10572–10577

    Article  PubMed  CAS  Google Scholar 

  22. Hayase A., Takagi M., Miyazaki T., Oshiumi H., Shinohara M., Shinohara A., 2004 A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119: 927–940

    Article  PubMed  CAS  Google Scholar 

  23. Tsubouchi H., Roeder G.S., 2004 The budding yeast mei5 and sae3 proteins act together with dmc1 during meiotic recombination. Genetics 168: 1219–1230

    Article  PubMed  CAS  Google Scholar 

  24. Peoples-Holst T.L., Burgess S.M., 2005 Multiple branches of the meiotic recombination pathway contribute independently to homolog pairing and stable juxtaposition during meiosis in budding yeast. Genes Dev. 19: 863–874

    Article  PubMed  CAS  Google Scholar 

  25. Lui D.Y., Peoples-Holst T.L., Mell J.C., Wu H.Y., Dean E.W., Burgess S.M., 2006 Analysis of close stable homolog juxtaposition during meiosis in mutants of Saccharomyces cerevisiae. Genetics 173: 1207–1222

    Article  PubMed  CAS  Google Scholar 

  26. Sym M., Engebrecht J.A., Roeder G.S., 1993 ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72: 365–378

    Article  PubMed  CAS  Google Scholar 

  27. Tung K.S., Roeder G.S., 1998 Meiotic chromosome morphology and behavior in zip1 mutants of Saccharomyces cerevisiae. Genetics 149: 817–832

    PubMed  CAS  Google Scholar 

  28. Dong H., Roeder G.S., 2000 Organization of the yeast Zip1 protein within the central region of the synaptonemal complex. J. Cell Biol. 148: 417–426

    Article  PubMed  CAS  Google Scholar 

  29. Page S.L., Hawley R.S., 2004 The genetics and molecular biology of the synaptonemal complex. Annu. Rev. Cell Dev. Biol. 20: 525–558

    Article  PubMed  CAS  Google Scholar 

  30. Agarwal S., Roeder G.S., 2000 Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102: 245–255

    Article  PubMed  CAS  Google Scholar 

  31. Chua P.R., Roeder G.S., 1998 Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93: 349–359

    Article  PubMed  CAS  Google Scholar 

  32. Perry J., Kleckner N., Borner G.V., 2005 Bioinformatic analyses implicate the collaborating meiotic crossover/chiasma proteins Zip2, Zip3, and Spo22/Zip4 in ubiquitin labeling. Proc. Natl. Acad. Sci. USA 102: 17594–17599

    Article  PubMed  CAS  Google Scholar 

  33. Tsubouchi T., Zhao H., Roeder G.S., 2006 The meiosis-specific zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with zip2. Dev. Cell 10: 809–819

    Article  PubMed  CAS  Google Scholar 

  34. Fung J.C., Rockmill B., Odell M., Roeder G.S., 2004 Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116: 795–802

    Article  PubMed  CAS  Google Scholar 

  35. Borner G.V., Kleckner N., Hunter N., 2004 Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117: 29–45

    Article  PubMed  Google Scholar 

  36. Laroche T., Martin S.G., Gotta M., Gorham H.C., Pryde F.E., Louis E.J., Gasser S.M., 1998 Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol. 8: 653–656

    Article  PubMed  CAS  Google Scholar 

  37. Galy V., Olivo-Marin J.C., Scherthan H., Doye V., Rascalou N., Nehrbass U., 2000 Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403: 108–112

    Article  PubMed  CAS  Google Scholar 

  38. Trelles-Sticken E., Adelfalk C., Loidl J., Scherthan H., 2005 Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J. Cell Biol. 170: 213–223

    Article  PubMed  CAS  Google Scholar 

  39. Conrad M.N., Dominguez A.M., Dresser M.E., 1997 Ndj1p, a meiotic telomere protein required for normal chromosome synapsis and segregation in yeast. Science 276: 1252–1255

    Article  PubMed  CAS  Google Scholar 

  40. Wu H.Y., Burgess S.M., 2006 Ndj1, a telomere-associated protein, promotes meiotic recombination in budding yeast. Mol. Cell Biol. 26: 3683–3694

    Article  PubMed  CAS  Google Scholar 

  41. Tsubouchi T., Roeder G.S., 2005 A synaptonemal complex protein promotes homology-independent centromere coupling. Science 308: 870–873

    Article  PubMed  CAS  Google Scholar 

  42. Cheng C.H., Lo Y.H., Liang S.S., Ti S.C., Lin F.M., Yeh C.H., Huang H.Y., Wang T.F., 2006 SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 20: 2067–2081

    Article  PubMed  CAS  Google Scholar 

  43. Hooker G.W., Roeder G.S., 2006 A role for SUMO in meiotic chromosome synapsis. Curr. Biol. 16: 1238–1243

    Article  PubMed  CAS  Google Scholar 

  44. Johnson E.S., 2004 Protein modification by SUMO. Annu. Rev. Biochem. 73: 355–382

    Article  PubMed  CAS  Google Scholar 

  45. Gill G., 2004 SUMO and ubiquitin in the nucleus: Different functions, similar mechanisms? Genes Dev. 18: 2046–2059

    Article  PubMed  CAS  Google Scholar 

  46. Muller S., Ledl A., Schmidt D., 2004 SUMO: A regulator of gene expression and genome integrity. Oncogene 23: 1998–2008

    Article  PubMed  CAS  Google Scholar 

  47. Reindle A., Belichenko I., Bylebyl G.R., Chen X.L., Gandhi N., Johnson E.S., 2006 Multiple domains in Siz SUMO ligases contribute to substrate selectivity. J. Cell Sci. 119: 4749–4757

    Article  PubMed  CAS  Google Scholar 

  48. Li S.J., Hochstrasser M., 2000 The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell Biol. 20: 2367–2377

    Article  PubMed  CAS  Google Scholar 

  49. Schwienhorst I., Johnson E.S., Dohmen R.J., 2000 SUMO conjugation and deconjugation. Mol. Gen. Genet. 263: 771–786

    Article  PubMed  CAS  Google Scholar 

  50. Li S.J., Hochstrasser M., 2003 The Ulp1 SUMO isopeptidase: Distinct domains required for viability, nuclear envelope localization, and substrate specificity. J. Cell Biol. 160: 1069–1081

    Article  PubMed  CAS  Google Scholar 

  51. Zhao X., Wu C.Y., Blobel G., 2004 Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. J. Cell Biol. 167: 605–611

    Article  PubMed  CAS  Google Scholar 

  52. Bachant J., Alcasabas A., Blat Y., Kleckner N., Elledge S.J., 2002 The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol. Cell 9: 1169–1182

    Article  PubMed  CAS  Google Scholar 

  53. Stead K., Aguilar C., Hartman T., Drexel M., Meluh P., Guacci V., 2003 Pds5p regulates the maintenance of sister chromatid cohesion and is sumoylated to promote the dissolution of cohesion. J. Cell Biol. 163: 729–741

    Article  PubMed  CAS  Google Scholar 

  54. Bylebyl G.R., Belichenko I., Johnson E.S., 2003 The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J. Biol. Chem. 278: 44113–441120

    Article  PubMed  CAS  Google Scholar 

  55. Shiio Y., Eisenman R.N., 2003 Histone sumoylation is associated with transcriptional repression. Proc. Natl. Acad. Sci. USA 100: 13225–13230

    Article  PubMed  CAS  Google Scholar 

  56. Sterner D.E., Nathan D., Reindle A., Johnson E.S., Berger S.L., 2006 Sumoylation of the yeast Gcn5 protein. Biochemistry 45: 1035–1042

    Article  PubMed  CAS  Google Scholar 

  57. Bencsath K.P., Podgorski M.S., Pagala V.R., Slaughter C.A., Schulman B.A., 2002 Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J. Biol. Chem. 277: 47938–47945

    Article  PubMed  CAS  Google Scholar 

  58. Takahashi Y., Toh E.A., Kikuchi Y., 2003 Comparative analysis of yeast PIAS-type SUMO ligases in vivo and in vitro. J. Biochem. (Tokyo) 133: 415–422

    CAS  Google Scholar 

  59. Johnson E.S., Gupta A.A., 2001 An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106: 735–744

    Article  PubMed  CAS  Google Scholar 

  60. Taylor D.L., Ho J.C., Oliver A., Watts F.Z., 2002 Cell-cycle-dependent localisation of Ulp1, a Schizosaccharomyces pombe Pmt3 (SUMO)-specific protease. J. Cell Sci. 115: 1113–1122

    PubMed  CAS  Google Scholar 

  61. Zhao X., Blobel G., 2005 A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. USA 102: 4777–4782

    Article  PubMed  CAS  Google Scholar 

  62. Shen T.H., Lin H.K., Scaglioni P.P., Yung T.M., Pandolfi P.P., 2006 The mechanisms of PML-nuclear body formation. Mol. Cell 24: 331–339

    Article  PubMed  CAS  Google Scholar 

  63. Lin D.Y., Huang Y.S., Jeng J.C., Kuo H.Y., Chang C.C., Chao T.T., Ho C.C., Chen Y.C., Lin T.P., Fang H.I., Hung C.C., Suen C.S., Hwang M.J., Chang K.S., Maul G.G., Shih H.M., 2006 Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24: 341–354

    Article  PubMed  CAS  Google Scholar 

  64. Lee B.H., Yoshimatsu K., Maeda A., Ochiai K., Morimatsu M., Araki K., Ogino M., Morikawa S., Arikawa J., 2003 Association of the nucleocapsid protein of the Seoul and Hantaan hantaviruses with small ubiquitin-like modifier-1-related molecules. Virus Res. 98: 83–91

    Article  PubMed  CAS  Google Scholar 

  65. Kaukinen P., Vaheri A., Plyusnin A., 2003 Non-covalent interaction between nucleocapsid protein of Tula hantavirus and small ubiquitin-related modifier-1, SUMO-1. Virus Res. 92: 37–45

    Article  PubMed  CAS  Google Scholar 

  66. Wilson V.G., Rangasamy D., 2001 Viral interaction with the host cell sumoylation system. Virus Res. 81: 17–27

    Article  PubMed  CAS  Google Scholar 

  67. Hannich J.T., Lewis A., Kroetz M.B., Li S.J., Heide H., Emili A., Hochstrasser M., 2005 Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem. 280: 4102–4110

    Article  PubMed  CAS  Google Scholar 

  68. Song J., Durrin L.K., Wilkinson T.A., Krontiris T.G., Chen Y., 2004 Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA 101: 14373–14378

    Article  PubMed  CAS  Google Scholar 

  69. Smith A.V., Roeder G.S., 1997 The yeast Red1 protein localizes to the cores of meiotic chromosomes. J. Cell Biol. 136: 957–967

    Article  PubMed  CAS  Google Scholar 

  70. Smith K.N., Penkner A., Ohta K., Klein F., Nicolas A., 2001 B-type cyclins CLB5 and CLB6 control the initiation of recombination and synaptonemal complex formation in yeast meiosis. Curr. Biol. 11: 88–97

    Article  PubMed  CAS  Google Scholar 

  71. Henderson K.A., Keeney S., 2004 Tying synaptonemal complex initiation to the formation and programmed repair of DNA double-strand breaks. Proc. Natl. Acad. Sci. USA 101: 4519–4524

    Article  PubMed  CAS  Google Scholar 

  72. Pfander B., Moldovan G.L., Sacher M., Hoege C., Jentsch S., 2005 SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436: 428–433

    PubMed  CAS  Google Scholar 

  73. Ulrich H.D., Vogel S., Davies A.A., 2005 SUMO keeps a check on recombination during DNA replication. Cell Cycle 4: 1699–1702

    PubMed  CAS  Google Scholar 

  74. Montpetit B., Hazbun T.R., Fields S., Hieter P., 2006 Sumoylation of the budding yeast kinetochore protein Ndc10 is required for Ndc10 spindle localization and regulation of anaphase spindle elongation. J. Cell Biol. 174: 653–663

    Article  PubMed  CAS  Google Scholar 

  75. Takahashi Y., Yong-Gonzalez V., Kikuchi Y., Strunnikov A., 2006 SIZ1/SIZ2 control of chromosome transmission fidelity is mediated by the sumoylation of topoisomerase II. Genetics 172: 783–794

    Article  PubMed  CAS  Google Scholar 

  76. Potts P.R., Yu H., 2005 Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell Biol. 25: 7021–7032

    Article  PubMed  CAS  Google Scholar 

  77. Montelone B.A., Koelliker K.J., 1995 Interactions among mutations affecting spontaneous mutation, mitotic recombination, and DNA repair in yeast. Curr. Genet. 27: 102–109

    Article  PubMed  CAS  Google Scholar 

  78. Branzei D., Sollier J., Liberi G., Zhao X., Maeda D., Seki M., Enomoto T., Ohta K., Foiani M., 2006 Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127: 509–522

    Article  PubMed  CAS  Google Scholar 

  79. Jessop L., Rockmill B., Roeder G.S., Lichten M., 2006 Meiotic chromosome synapsis-promoting proteins antagonize the anti-crossover activity of sgs1. PLoS Genet. 2: e155

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Fang Wang.

Additional information

This article is dedicated to the 20th anniversary of the Institute of Molecular Biology, Academia Sinica. TFW is grateful to all teachers at IMB, including James C. Wang, Ru-Chih Huang, Ping-Chien Huang, Chung Wang, Henry Y. Sun, Jychian Chen, Ming-Zong Lai, Bon-Chu Chung, and Soo-Chen Cheng. We apologize to those whose work could not be cited due to the brevity of this contribution. TFW was supported by the Investigator Award from Academia Sinica and by the Ta-You Wu Award from the National Science Council, Taiwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, CH., Lin, FM., Lo, YH. et al. Tying SUMO modifications to dynamic behaviors of chromosomes during meiotic prophase of Saccharomyces cerevisiae . J Biomed Sci 14, 481–490 (2007). https://doi.org/10.1007/s11373-007-9176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-007-9176-0

Keywords

Navigation