Skip to main content

Advertisement

Log in

Immunotherapeutic strategies employing RNA interference technology for the control of cancers

  • Published:
Journal of Biomedical Science

Summary

The human immune system is comprised of several types of cells that have the potential to eradicate tumors without inflicting damage on normal tissue. Over the past decade, progress in the understanding of tumor biology and immunology has offered the exciting possibility of treating malignant disease with vaccines that exploit the capacity of T cells to effectively and selectively kill tumor cells. However, the immune system frequently fails to mount a successful defense against cancers despite vaccination with tumor-associated antigens. The ability of these vaccines to generate an abundant supply of armed effector T cells is often limited by immunoregulatory signaling pathways that suppress T cell activation. In addition, many tumors create a local microenvironment that inhibits the function of T cells. The attenuation of these pathways, which facilitate the evasion of tumors from immune surveillance, thus represents a potentially effective approach for cancer immunotherapy. Specifically, it may be of interest to modify the properties of dendritic cells, T cells, and tumor cells to downregulate the expression of proteins that diminish the immune response to cancers. RNA interference (RNAi) techniques have developed into a highly effective means of intracellular gene ‘knockdown’ and may be successfully employed in this way to improve cancer immunotherapies. This strategy has recently been explored both in vitro and in vivo, and has generated significantly enhanced antitumor immunity in numerous studies. Nevertheless, several practical concerns remain to be resolved before RNAi technology can be implemented safely and efficiently in humans. As novel developments and discoveries in molecular biology rapidly continue to unfold, it is likely that this technology may soon translate into a potent form of gene silencing in the clinic with profound applications to cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caplen N.J. (2004) Gene therapy progress and prospects. Downregulating gene expression: the impact of RNA interference. Gene Ther. 11:1241–1248

    Article  PubMed  CAS  Google Scholar 

  2. Leung R.K., Whittaker P.A. (2005) RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol. Ther. 107:222–239

    Article  PubMed  CAS  Google Scholar 

  3. Shankar P., Manjunath N., Lieberman J. (2005) The prospect of silencing disease using RNA interference. Jama 293:1367–1373

    Article  PubMed  CAS  Google Scholar 

  4. Pai S.I., Lin Y.Y., Macaes B., Meneshian A., Hung C.F., Wu T.C. (2006) Prospects of RNA interference therapy for cancer. Gene Ther. 13:464–477

    Article  PubMed  CAS  Google Scholar 

  5. Munn D.H., Sharma M.D., Lee J.R., Jhaver K.G., Johnson T.S., Keskin D.B., Marshall B., Chandler P., Antonia S.J., Burgess R., Slingluff C.L. Jr., Mellor A.L. (2002) Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297:1867–1870

    Article  PubMed  CAS  Google Scholar 

  6. Lee J.R., Dalton R.R., Messina J.L., Sharma M.D., Smith D.M., Burgess R.E., Mazzella F., Antonia S.J., Mellor A.L., Munn D.H. (2003) Pattern of recruitment of immunoregulatory antigen-presenting cells in malignant melanoma. Lab. Invest. 83:1457–1466

    Article  PubMed  CAS  Google Scholar 

  7. Munn D.H., Sharma M.D., Hou D., Baban B., Lee J.R., Antonia S.J., Messina J.L., Chandler P., Koni P.A., Mellor A.L. (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest. 114:280–290

    Article  PubMed  CAS  Google Scholar 

  8. Shen L., Evel-Kabler K., Strube R., Chen S.Y. (2004) Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat. Biotechnol. 22:1546–1553

    Article  PubMed  CAS  Google Scholar 

  9. Kubo M., Hanada T., Yoshimura A. (2003) Suppressors of cytokine signaling and immunity. Nat. Immunol. 4: 1169–1176

    Article  PubMed  CAS  Google Scholar 

  10. Zhou H., Zhang D., Wang Y., Dai M., Zhang L., Liu W., Liu D., Tan H. and Huang Z., Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector. Biochem. Biophys. Res. Commun. 347:200–207, 2006

    Google Scholar 

  11. Yang R., Yang X., Zhang Z., Zhang Y., Wang S., Cai Z., Jia Y., Ma Y., Zheng C., Lu Y., Roden R. and Chen Y., Single-walled carbon nanotubes-mediated in vivo and in vitro delivery of siRNA into antigen-presenting cells. Gene Ther. 2006

  12. Carter L., Fouser L.A. Jussif J., Fitz L., Deng B., Wood C.R. Collins M., Honjo T., Freeman G.J., Carreno B.M. (2002) PD-1: PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur. J. Immunol. 32:634–643

    Article  PubMed  CAS  Google Scholar 

  13. Latchman Y., Wood C.R. Chernova T., Chaudhary D., Borde M., Chernova I., Iwai Y., Long A.J. Brown J.A. Nunes R., Greenfield E.A. Bourque K., Boussiotis V.A. Carter L.L. Carreno B.M. Malenkovich N., Nishimura H., Okazaki T., Honjo T., Sharpe A.H., Freeman G.J. (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2:261–268

    Article  PubMed  CAS  Google Scholar 

  14. Brown J.A., Dorfman D.M., Ma F.R., Sullivan E.L., Munoz O., Wood C.R., Greenfield E.A., Freeman G.J. (2003) Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J. Immunol. 170: 1257–1266

    PubMed  CAS  Google Scholar 

  15. Curiel T.J. Wei S., Dong H., Alvarez X., Cheng P., Mottram P., Krzysiek R., Knutson K.L. Daniel B., Zimmermann M.C. David O., Burow M., Gordon A., Dhurandhar N., Myers L., Berggren R., Hemminki A., Alvarez R.D. Emilie D., Curiel D.T. Chen L., Zou W. (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med. 9: 562–567

    Article  PubMed  CAS  Google Scholar 

  16. Shi L., Luo K., Xia D., Chen T., Chen G., Jiang Y., Li N. and Cao X., DIgR2, dendritic cell-derived immunoglobulin receptor 2, is one representative of a family of IgSF inhibitory receptors and mediates negative regulation of dendritic cell-initiated antigen-specific T cell responses. Blood 108:2678–2686, 2006

    Google Scholar 

  17. Hoyne G.F., Le Roux I., Corsin-Jimenez M., Tan K., Dunne J., Forsyth L.M., Dallman M.J., Owen M.J., Ish-Horowicz D., Lamb J.R. (2000) Serrate1-induced notch signalling regulates the decision between immunity and tolerance made by peripheral CD4(+) T cells. Int. Immunol. 12: 177–185

    Article  PubMed  CAS  Google Scholar 

  18. Wong K.K., Carpenter M.J., Young L.L., Walker S.J., McKenzie G., Rust A.J., Ward G., Packwood L., Wahl K., Delriviere L., Hoyne G., Gibbs P., Champion B.R., Lamb J.R., Dallman M.J., (2003) Notch ligation by Delta1 inhibits peripheral immune responses to transplantation antigens by a CD8+ cell-dependent mechanism. J. Clin. Invest. 112:1741–1750

    Article  PubMed  CAS  Google Scholar 

  19. Amsen D., Blander J.M. Lee G.R. Tanigaki K., Honjo T., and Flavell R.A. (2004) Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117: 515–526

    Article  PubMed  CAS  Google Scholar 

  20. Stallwood Y., Briend E., Ray K.M., Ward G.A., Smith B.J., Nye E., Champion B.R., McKenzie G.J. (2006) Small interfering RNA-mediated knockdown of notch ligands in primary CD4+ T cells and dendritic cells enhances cytokine production. J. Immunol. 177: 885–895

    PubMed  CAS  Google Scholar 

  21. Iellem A., Mariani M., Lang R., Recalde H., Panina-Bordignon P., Sinigaglia F., and D’Ambrosio D. (2001) Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J. Exp. Med. 194:847–853

    Article  PubMed  CAS  Google Scholar 

  22. Liu G., Ng H., Akasaki Y., Yuan X., Ehtesham M., Yin D., Black K.L., Yu J. S. (2004) Small interference RNA modulation of IL-10 in human monocyte-derived dendritic cells enhances the Th1 response. Eur. J. Immunol. 34: 1680–1687

    Article  PubMed  CAS  Google Scholar 

  23. Diehl S., Rincon M. (2002) The two faces of IL-6 on Th1/Th2 differentiation. Mol. Immunol. 39: 531–536

    Article  PubMed  CAS  Google Scholar 

  24. Ingulli E., Mondino A., Khoruts A., Jenkins M.K. (1997) In vivo detection of dendritic cell antigen presentation to CD4(+) T cells. J. Exp. Med. 185: 2133–2141

    Article  PubMed  CAS  Google Scholar 

  25. Hou W. S. and Van Parijs L. (2004) A Bcl-2-dependent molecular timer regulates the lifespan and immunogenicity of dendritic cells. Nat. Immunol. 5:583–589

    Article  PubMed  CAS  Google Scholar 

  26. Nopora A., Brocker T. (2002) Bcl-2 controls dendritic cell longevity in vivo. J. Immunol. 169:3006–3014

    PubMed  CAS  Google Scholar 

  27. Kim T.W., Hung C.F., Ling M., Juang J., He L., Hardwick J.M., Kumar S., and Wu T.C. (2003) Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. J. Clin. Invest. 112:109–117

    Article  PubMed  CAS  Google Scholar 

  28. Kim T.W., Hung C.F., Boyd D.A., He L., Lin C.T., Kaiserman D., Bird P.I., Wu T.C. (2004) Enhancement of DNA vaccine potency by coadministration of a tumor antigen gene and DNA encoding serine protease inhibitor-6. Cancer Res. 64: 400–405

    Article  PubMed  CAS  Google Scholar 

  29. Peng S., Kim T.W., Lee J.H., Yang M., He L., Hung C.F., Wu T.C. (2005) Vaccination with dendritic cells transfected with BAK and BAX siRNA enhances antigen-specific immune responses by prolonging dendritic cell life. Hum. Gene. Ther. 16:584–593

    Article  PubMed  CAS  Google Scholar 

  30. Kim T.W., Lee J.H., He L., Boyd D.A., Hardwick J.M., Hung C.F., Wu T.C. (2005) Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Res. 65: 309–316

    PubMed  CAS  Google Scholar 

  31. Kershaw M.H., Teng M.W., Smyth M.J., Darcy P.K. (2005) Supernatural T cells: genetic modification of T cells for cancer therapy. Nat. Rev. Immunol. 5:928–940

    Article  PubMed  CAS  Google Scholar 

  32. Ossendorp F., Mengede E., Camps M., Filius R., Melief C.J. (1998) Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp. Med. 187:693–702

    Article  PubMed  CAS  Google Scholar 

  33. Skapenko A., Leipe J., Niesner U., Devriendt K., Beetz R., Radbruch A., Kalden J.R., Lipsky P.E., Schulze-Koops H. (2004) GATA-3 in human T cell helper type 2 development. J. Exp. Med. 199:423–428

    Article  PubMed  CAS  Google Scholar 

  34. Mattes J., Hulett M., Xie W., Hogan S., Rothenberg M.E., Foster P., Parish C. (2003) Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J. Exp. Med. 197: 387–393

    Article  PubMed  CAS  Google Scholar 

  35. Szabo S.J., Kim S.T., Costa G.L., Zhang X., Fathman C.G., Glimcher L.H. (2000) A novel transcription factor T-bet directs Th1 lineage commitment. Cell 100:655–669

    Article  PubMed  CAS  Google Scholar 

  36. Charo J., Finkelstein S.E., Grewal N., Restifo N.P., Robbins P.F., Rosenberg S.A. (2005) Bcl-2 overexpression enhances tumor-specific T-cell survival. Cancer Res. 65:2001–2008

    Article  PubMed  CAS  Google Scholar 

  37. Eaton D., Gilham D.E., O’Neill A., Hawkins R.E. (2002) Retroviral transduction of human peripheral blood lymphocytes with Bcl-X(L) promotes in vitro lymphocyte survival in pro-apoptotic conditions. Gene Ther. 9: 527–535

    Article  PubMed  CAS  Google Scholar 

  38. Dotti G., Savoldo B., Pule M., Straathof K.C., Biagi E., Yvon E., Vigouroux S., Brenner M.K., Rooney C.M. (2005) Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 105:4677–4684

    Article  PubMed  CAS  Google Scholar 

  39. Hsieh C.L., Chen D.S. and Hwang L.H., Tumor-induced immunosuppression: a barrier to immunotherapy of large tumors by cytokine-secreting tumor vaccine. Hum. Gene. Ther. 11: 681–692, 2000

    Google Scholar 

  40. Poppema S., Potters M., Visser L., van den Berg A. M. (1998) Immune escape mechanisms in Hodgkin’s disease. Ann. Oncol. 9(Suppl 5):S21–24

    Article  PubMed  Google Scholar 

  41. Scarpa S., Coppa A., Ragano-Caracciolo M., Mincione G., Giuffrida A., Modesti A., Colletta G. (1996) Transforming growth factor beta regulates differentiation and proliferation of human neuroblastoma. Exp. Cell. Res. 229:147–154

    Article  PubMed  CAS  Google Scholar 

  42. Jayaraman L., Massague J. (2000) Distinct oligomeric states of SMAD proteins in the transforming growth factor-beta pathway. J. Biol. Chem. 275:40710–40717

    Article  PubMed  CAS  Google Scholar 

  43. Massague J. (1998) TGF-beta signal transduction. Annu. Rev. Biochem. 67:753–791

    Article  PubMed  CAS  Google Scholar 

  44. Depoortere F., Pirson I., Bartek J., Dumont J.E., Roger P.P. (2000) Transforming growth factor beta(1) selectively inhibits the cyclic AMP-dependent proliferation of primary thyroid epithelial cells by preventing the association of cyclin D3-cdk4 with nuclear p27(kip1). Mol. Biol. Cell. 11:1061–1076

    PubMed  CAS  Google Scholar 

  45. Sandhu C., Garbe J., Bhattacharya N., Daksis J., Pan C.H., Yaswen P., Koh J., Slingerland J.M., Stampfer M.R. (1997) Transforming growth factor beta stabilizes p15INK4B protein increases p15INK4B-cdk4 complexes and inhibits cyclin D1-cdk4 association in human mammary epithelial cells. Mol. Cell. Biol. 17:2458–2467

    PubMed  CAS  Google Scholar 

  46. Fargeas C., Wu C.Y., Nakajima T., Cox D., Nutman T., Delespesse G. (1992) Differential effect of transforming growth factor beta on the synthesis of Th1- and Th2-like lymphokines by human T lymphocytes. Eur. J. Immunol. 22:2173–2176

    PubMed  CAS  Google Scholar 

  47. Palladino M.A., Morris R.E., Starnes H.F., Levinson A.D. (1990) The transforming growth factor-betas. A new family of immunoregulatory molecules. Ann. NY Acad. Sci. 593:181–187

    Article  PubMed  CAS  Google Scholar 

  48. Leach D.R., Krummel M.F., Allison J.P. (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736

    Article  PubMed  CAS  Google Scholar 

  49. Iwai Y., Terawaki S., Honjo T. (2005) PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int. Immunol. 17:133–144

    Article  PubMed  CAS  Google Scholar 

  50. Shurin G.V., Shurin M.R., Bykovskaia S., Shogan J., Lotze M.T., Barksdale E.M. Jr. (2001) Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res. 61:363–369

    PubMed  CAS  Google Scholar 

  51. Peguet-Navarro J., Sportouch M., Popa I., Berthier O., Schmitt D., Portoukalian J. (2003) Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. J. Immunol. 170:3488–3494

    PubMed  CAS  Google Scholar 

  52. Menetrier-Caux C., Montmain G., Dieu M.C., Bain C., Favrot M.C., Caux C., Blay J.Y. (1998) Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92:4778–4791

    PubMed  CAS  Google Scholar 

  53. Joki T., Heese O., Nikas D.C., Bello L., Zhang J., Kraeft S.K., Seyfried N.T., Abe T., Chen L.B., Carroll R.S. and Black P.M., Expression of cyclooxygenase 2 (COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor NS-398. Cancer Res. 60: 4926–4931, 2000

    Google Scholar 

  54. Shono T., Tofilon P.J., Bruner J.M., Owolabi O., Lang F.F. (2001) Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res. 61:4375–4381

    PubMed  CAS  Google Scholar 

  55. Wolff H., Saukkonen K., Anttila S., Karjalainen A., Vainio H., Ristimaki A. (1998) Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res. 58:4997–5001

    PubMed  CAS  Google Scholar 

  56. Sombroek C.C., Stam A.G., Masterson A.J., Lougheed S.M., Schakel M.J., Meijer C.J., Pinedo H.M., van den Eertwegh A.J., Scheper R.J., de Gruijl T.D. (2002) Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J. Immunol. 168:4333–4343

    PubMed  CAS  Google Scholar 

  57. Akasaki Y., Liu G., Chung N.H., Ehtesham M., Black K.L., Yu J.S. (2004) Induction of a CD4+ T regulatory type 1 response by cyclooxygenase-2-overexpressing glioma. J. Immunol. 173:4352–4359

    PubMed  CAS  Google Scholar 

  58. Carmeliet P., Jain R.K. (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  59. Kryczek I., Lange A., Mottram P., Alvarez X., Cheng P., Hogan M., Moons L., Wei S., Zou L., Machelon V., Emilie D., Terrassa M., Lackner A., Curiel T.J. Carmeliet P., Zou W. (2005) CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res. 65:465–472

    PubMed  CAS  Google Scholar 

  60. Gabrilovich D.I., Chen H.L., Girgis K.R., Cunningham H.T., Meny G.M. Nadaf S., Kavanaugh D., Carbone D.P. (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2:1096–1103

    Article  PubMed  CAS  Google Scholar 

  61. Ito M., Minamiya Y., Kawai H., Saito S., Saito H., Nakagawa T., Imai K., Hirokawa M., Ogawa J. (2006) Tumor-derived TGFbeta-1 induces dendritic cell apoptosis in the sentinel lymph node. J. Immunol. 176:5637–5643

    PubMed  CAS  Google Scholar 

  62. Yang T., Witham T.F., Villa L., Erff M., Attanucci J., Watkins S., Kondziolka D., Okada H., Pollack I.F., Chambers W.H. (2002) Glioma-associated hyaluronan induces apoptosis in dendritic cells via inducible nitric oxide synthase: implications for the use of dendritic cells for therapy of gliomas. Cancer Res. 62:2583–2591

    PubMed  CAS  Google Scholar 

  63. Zou W. (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5:263–274

    Article  PubMed  CAS  Google Scholar 

  64. Hawiger D., Inaba K., Dorsett Y., Guo M., Mahnke K., Rivera M., Ravetch J.V., Steinman R.M., Nussenzweig M.C. (2001) Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194:769–779

    Article  PubMed  CAS  Google Scholar 

  65. Dhodapkar M.V., Steinman R.M., Krasovsky J., Munz C., Bhardwaj N. (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193:233–238

    Article  PubMed  CAS  Google Scholar 

  66. Jonuleit H., Schmitt E., Schuler G., Knop J., and Enk A.H. (2000) Induction of interleukin 10-producing nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192:1213–1222

    Article  PubMed  CAS  Google Scholar 

  67. Todaro M., Zerilli M., Ricci-Vitiani L., Bini M., Perez Alea M., Maria Florena A., Miceli L., Condorelli G., Bonventre S., Di Gesu G., De Maria R., Stassi G. (2006) Autocrine production of interleukin-4 and interleukin-10 is required for survival and growth of thyroid cancer cells. Cancer Res. 66:1491–1499

    Article  PubMed  CAS  Google Scholar 

  68. Dong H., Strome S.E., Salomao D.R., Tamura H., Hirano F., Flies D.B., Roche P.C., Lu J., Zhu G., Tamada K., Lennon V.A. Celis E., Chen L. (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8:793–800

    PubMed  CAS  Google Scholar 

  69. Iwai Y., Ishida M., Tanaka Y., Okazaki T., Honjo T., Minato N. (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA 99:12293–12297

    Article  PubMed  CAS  Google Scholar 

  70. Strome S.E., Dong H., Tamura H., Voss S.G., Flies D.B., Tamada K., Salomao D., Cheville J., Hirano F., Lin W., Kasperbauer J.L., Ballman K.V., Chen L. (2003) B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 63:6501–6505

    PubMed  CAS  Google Scholar 

  71. Comoglio P.M., Tamagnone L., and Giordano S. (2004) Invasive growth: a two-way street for semaphorin signalling. Nat. Cell. Biol. 6:1155–1157

    Article  PubMed  CAS  Google Scholar 

  72. Tamagnone L., Comoglio P.M. (2000) Signalling by semaphorin receptors: cell guidance and beyond. Trends Cell. Biol. 10:377–383

    Article  PubMed  CAS  Google Scholar 

  73. Bachelder R.E., Lipscomb E.A., Lin X., Wendt M.A., Chadborn N.H., Eickholt B.J., Mercurio A.M. (2003) Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells. Cancer Res. 63:5230–5233

    PubMed  CAS  Google Scholar 

  74. Roche J., Boldog F., Robinson M., Robinson L., Varella-Garcia M., Swanton M., Waggoner B., Fishel R., Franklin W., Gemmill R., Drabkin H. (1996) Distinct 3p21.3 deletions in lung cancer and identification of a new human semaphorin. Oncogene 12:1289–1297

    PubMed  CAS  Google Scholar 

  75. Rieger J., Wick W., Weller M. (2003) Human malignant glioma cells express semaphorins and their receptors neuropilins and plexins. Glia 42:379–389

    Article  PubMed  Google Scholar 

  76. Catalano A., Caprari P., Rodilossi S., Betta P., Castellucci M., Casazza A., Tamagnone L., Procopio A. (2004) Cross-talk between vascular endothelial growth factor and semaphorin-3A pathway in the regulation of normal and malignant mesothelial cell proliferation. Faseb J. 18:358–360

    PubMed  CAS  Google Scholar 

  77. Catalano A., Caprari P., Moretti S., Faronato M., Tamagnone L., Procopio A. (2006) Semaphorin-3A is expressed by tumor cells and alters T-cell signal transduction and function. Blood 107:3321–3329

    Article  PubMed  CAS  Google Scholar 

  78. Huang B., Zhao J., Li H., He K.L., Chen Y., Chen S.H., Mayer L., Unkeless J.C., Xiong H. (2005) Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 65:5009–5014

    Article  PubMed  CAS  Google Scholar 

  79. Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M.J. Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C., Shipley J., Hargrave D., Pritchard-Jones K., Maitland N., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A., Nicholson A., Ho J.W., Leung S.Y., Yuen S.T. Weber B.L., Seigler H.F., Darrow T.L., Paterson H., Marais R., Marshall C.J., Wooster R., Stratton M.R., Futreal P.A. (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  80. Sumimoto H., Imabayashi F., Iwata T., Kawakami Y. (2006) The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med. 203:1651–1656

    Article  PubMed  CAS  Google Scholar 

  81. Uyttenhove C., Pilotte L., Theate I., Stroobant V., Colau D., Parmentier N., Boon T., Van den Eynde B.J. (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9:1269–1274

    Article  PubMed  CAS  Google Scholar 

  82. Perillo N.L., Pace K.E., Seilhamer J.J. and Baum L.G., Apoptosis of T cells mediated by galectin-1. Nature 378: 736–739, 1995

    Google Scholar 

  83. Chung C.D., Patel V.P., Moran M., Lewis L.A. and Miceli M.C., Galectin-1 induces partial TCR zeta-chain phosphorylation and antagonizes processive TCR signal transduction. J. Immunol. 165: 3722–3729, 2000

    Google Scholar 

  84. Rabinovich G.A., Baum L.G., Tinari N., Paganelli R., Natoli C., Liu F.T., Iacobelli S. (2002) Galectins and their ligands: amplifiers silencers or tuners of the inflammatory response? Trends Immunol. 23:313–320

    Article  PubMed  CAS  Google Scholar 

  85. Shirasugi N., Ikeda Y., Akiyama Y., Matsumoto K., Hamano K., Esato K., Bashuda H., Yagita H., Okumura K., Takami H., Kodaira S., Niimi M. (2001) Induction of hyporesponsiveness to fully allogeneic cardiac grafts by intratracheal delivery of alloantigen. Transplantation 71:561–564

    Article  PubMed  CAS  Google Scholar 

  86. Camby I., Belot N., Rorive S., Lefranc F., Maurage C.A., Lahm H., Kaltner H., Hadari Y., Ruchoux M.M., Brotchi J., Zick Y., Salmon I., Gabius H.J., Kiss R. (2001) Galectins are differentially expressed in supratentorial pilocytic astrocytomas astrocytomas anaplastic astrocytomas and glioblastomas and significantly modulate tumor astrocyte migration. Brain Pathol. 11:12–26

    Article  PubMed  CAS  Google Scholar 

  87. van den Brule F.A., Waltregny D., Castronovo V. (2001) Increased expression of galectin-1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients. J. Pathol. 193:80–87

    Article  PubMed  Google Scholar 

  88. Xu X.C., el-Naggar A.K., Lotan R. (1995) Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications. Am. J. Pathol. 147:815–822

    PubMed  CAS  Google Scholar 

  89. Sanjuan X., Fernandez P.L., Castells A., Castronovo V., van den Brule F., Liu F.T., Cardesa A. and Campo E., Differential expression of galectin 3 and galectin 1 in colorectal cancer progression. Gastroenterology 113: 1906–1915, 1997

    Google Scholar 

  90. Cindolo L., Benvenuto G., Salvatore P., Pero R., Salvatore G., Mirone V., Prezioso D., Altieri V., Bruni C.B., Chiariotti L. (1999) galectin-1 and galectin-3 expression in human bladder transitional-cell carcinomas. Int. J. Cancer 84:39–43

    Article  PubMed  CAS  Google Scholar 

  91. van den Brule F., Califice S., Garnier F., Fernandez P.L., Berchuck A., Castronovo V. (2003) Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Lab. Invest. 83:377–386

    PubMed  Google Scholar 

  92. Rubinstein N., Alvarez M., Zwirner N.W., Toscano M.A., Ilarregui J.M., Bravo A., Mordoh J., Fainboim L., Podhajcer O.L., Rabinovich G.A. (2004) Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege. Cancer Cell. 5:241–251

    Article  PubMed  CAS  Google Scholar 

  93. Ryther R.C., Flynt A.S., Phillips J.A. 3rd, Patton J.G. (2005) siRNA therapeutics: big potential from small RNAs. Gene. Ther. 12:5–11

    Article  PubMed  CAS  Google Scholar 

  94. Carette J.E., Overmeer R.M., Schagen F.H., Alemany R., Barski O.A., Gerritsen W.R. and Van Beusechem V.W., Conditionally replicating adenoviruses expressing short hairpin RNAs silence the expression of a target gene in cancer cells. Cancer Res. 64: 2663–2667, 2004

    Google Scholar 

  95. Song J., Pang S., Lu Y., Yokoyama K.K., Zheng J.Y., Chiu R. (2004) Gene silencing in androgen-responsive prostate cancer cells from the tissue-specific prostate-specific antigen promoter. Cancer Res. 64:7661–7663

    Article  PubMed  CAS  Google Scholar 

  96. Schiffelers R.M., Ansari A., Xu J., Zhou Q., Tang Q., Storm G., Molema G., Lu P.Y., Scaria P.V., Woodle M.C. (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32: e149

    Article  PubMed  Google Scholar 

  97. Sumimoto H., Miyagishi M., Miyoshi H., Yamagata S., Shimizu A., Taira K., Kawakami Y. (2004) Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 23:6031–6039

    Article  PubMed  CAS  Google Scholar 

  98. Sumimoto H., Yamagata S., Shimizu A., Miyoshi H., Mizuguchi H., Hayakawa T., Miyagishi M., Taira K., Kawakami Y. (2005) Gene therapy for human small-cell lung carcinoma by inactivation of Skp-2 with virally mediated RNA interference. Gene. Ther. 12:95–100

    Article  PubMed  CAS  Google Scholar 

  99. Duxbury M.S., Ito H., Benoit E., Zinner M.J., Ashley S.W., Whang E.E. (2004) Retrovirally mediated RNA interference targeting the M2 subunit of ribonucleotide reductase: A novel therapeutic strategy in pancreatic cancer. Surgery 136:261–269

    Article  PubMed  Google Scholar 

  100. Chen L.M., Le H.Y., Qin R.Y., Kumar M., Du Z.Y., Xia R.J. and Deng J., Reversal of the phenotype by K-rasval12 silencing mediated by adenovirus-delivered siRNA in human pancreatic cancer cell line Panc-1. World J. Gastroenterol. 11: 831–838, 2005

    Google Scholar 

  101. Uchida H., Tanaka T., Sasaki K., Kato K., Dehari H., Ito Y., Kobune M., Miyagishi M., Taira K., Tahara H., Hamada H. (2004) Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol. Ther. 10:162–171

    Article  PubMed  CAS  Google Scholar 

  102. Brummelkamp T.R., Bernards R., Agami R. (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    Article  PubMed  CAS  Google Scholar 

  103. Chen J., Wall N.R., Kocher K., Duclos N., Fabbro D., Neuberg D., Griffin J.D., Shi Y. and Gilliland D.G., Stable expression of small interfering RNA sensitizes TEL-PDGFbetaR to inhibition with imatinib or rapamycin. J. Clin. Invest. 113: 1784–1791, 2004

    Google Scholar 

  104. Xu D., McCarty D., Fernandes A., Fisher M., Samulski R.J., Juliano R.L. (2005) Delivery of MDR1 small interfering RNA by self-complementary recombinant adeno-associated virus vector. Mol. Ther. 11:523–530

    Article  PubMed  CAS  Google Scholar 

  105. Zheng L., Liu J., Batalov S., Zhou D., Orth A., Ding S., and Schultz P.G. (2004) An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 101:135–140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This review is not intended to be encyclopedic, and we apologize to any authors not cited. We would like to thank Shaw-Wei D. Tsen for helpful discussion and critical review of the manuscript. This work is supported by the National Cancer Institute SPORE program (P50CA098252) and the NCDDG program (U19 CA113341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.-C. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, CP., Hung, CF. & Wu, TC. Immunotherapeutic strategies employing RNA interference technology for the control of cancers. J Biomed Sci 14, 15–29 (2007). https://doi.org/10.1007/s11373-006-9131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-006-9131-5

Keywords

Navigation