Skip to main content

Advertisement

Log in

Toxicogenomics of A375 human malignant melanoma cells treated with arbutin

  • Published:
Journal of Biomedical Science

Summary

Although arbutin is a natural product and widely used as an ingredient in skin care products, its effect on the gene expression level of human skin with malignant melanoma cells is rarely reported. We aim to investigate the genotoxic effect of arbutin on the differential gene expression profiling in A375 human malignant melanoma cells through its effect on tumorigenesis and related side-effect. The DNA microarray analysis provided the differential gene expression pattern of arbutin-treated A375 cells with the significant changes of 324 differentially expressed genes, containing 88 up-regulated genes and 236 down-regulated genes. The gene ontology of differentially expressed genes was classified as belonging to cellular component, molecular function and biological process. In addition, four down-regulated genes of AKT1, CLECSF7, FGFR3, and LRP6 served as candidate genes and correlated to suppress the biological processes in the cell cycle of cancer progression and in the downstream signaling pathways of malignancy of melanocytic tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomita K., Fukuda M., Kawasaki K. (1990) Mechanism of arbutin inhibitory effect on melanogenesis and effect on the human skin with cosmetic use. Fragrance J. 6:72–77

    Google Scholar 

  2. Maeda K., Fukuda M. (1996) Arbutin: mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther. 276:765–769

    PubMed  CAS  Google Scholar 

  3. Ichihashi M., Funasaka Y., Ohashi A., Chacraborty A., Ahmed N.U., Ueda M.,Osawa T. (1999) The inhibitory effect of dl-alpha-tocopheryl ferulate in lecithin on melanogenesis. Anticancer Res. 19:3769–3774

    PubMed  CAS  Google Scholar 

  4. Sugimoto K.S., Nishimura T., Nomura K., Sugimoto K., Kuriki T. (2004) Inhibitory effects of α-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model. Biol. Pharm. Bull. 27:510–514

    Article  PubMed  CAS  Google Scholar 

  5. Brem R., Hildebrandt T., Jarsch M., van Muijen G.N., Weidle U.H. (2001) Identification of metastasis-associated genes by transcriptional profiling of a metastasizing versus a non-metastasizing human melanoma cell line. Anticancer Res. 21:1731–1740

    PubMed  CAS  Google Scholar 

  6. de Wit N.J., Burtscher H.J., Weidle U.H., Ruiter D.J., van Muigen G.N. (2002) Differentially expressed genes identified in human melanoma cell lines with different metastatic behavior using high-density oligonucleotide arrays. Melanoma Res. 12:57–69

    Article  PubMed  Google Scholar 

  7. Kunz M., Ibrahim S.M., Koczan D., Scheid S., Thiesen H.J., Gross G. (2004) DNA microarray technology and its applications in dermatology. Exp. Dermatol. 13:593–606

    Article  PubMed  CAS  Google Scholar 

  8. Loveland B.E., Johns T.G., Mackay I.R., Vaillant F., Wang Z.X., Hertzog P.J. (1992) Validation of the MTT dye assay for enumeration of cells in proliferative and antiproliferative assays. Biochem. Int. 27:501–510

    PubMed  CAS  Google Scholar 

  9. Dudoit S., Yang Y.H., Speed T.P., Callow M.J. (2002) Statistical methods for identifying genes with differential expression in replicated cDNA microarray experiments. Stat. Sin. 12:111–139

    Google Scholar 

  10. Tiedtke J., Morel J., Marks O. (2004) Depigmentation factor bioflavonoids-a safe and effective skin lightener based on encapsulated citrus bioflavonoids. Cosmetochem 2:12–17

    Google Scholar 

  11. Cheng S.L., Liu R.H., Sheu J.N., Chen S.T., Sinchaikul S., Tsay G.J. (2006) Toxicogenomics of kojic acid on gene expression profiling of A375 human malignant melanoma cells. Biol. Pharm. Bull. 29:655–669

    Article  PubMed  CAS  Google Scholar 

  12. Bellacosa A., Kumar C.C., Di Cristofano A., Testa J.R. (2005) Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv. Cancer Res. 94:29–86

    Article  PubMed  CAS  Google Scholar 

  13. Vivanco I., Sawyers C.L. (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat. Rev. Cancer. 2:489–501

    Article  PubMed  CAS  Google Scholar 

  14. Song G., Ouyang G., Bao S. (2005) The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9:59–71

    PubMed  CAS  Google Scholar 

  15. Laprise P., Langlois M.J., Boucher M.J., Jobin C., Rivard N. (2004) Down-regulation of MEK/ERK signaling by E-cadherin-dependent PI3K/Akt pathway in differentiating intestinal epithelial cells. J. Cell. Physiol. 199:32–39

    Article  PubMed  CAS  Google Scholar 

  16. Parsa A.T., Holland E.C. (2004) Cooperative translational control of gene expression by Ras and Akt in cancer. Trends Mol. Med. 10:607–613

    Article  PubMed  CAS  Google Scholar 

  17. Giehl K. (2005) Oncogenic Ras in tumour progression and metastasis. Biol. Chem. 386:193–205

    Article  PubMed  CAS  Google Scholar 

  18. Robertson G.P. (2005) Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metastasis Rev. 24:273–285

    Article  PubMed  CAS  Google Scholar 

  19. Liu X., Shi Y., Han E.K., Chen Z., Rosenberg S.H., Giranda V.L., Luo Y., Ng S.C. (2001) Downregulation of Akt1 inhibits anchorage-independent cell growth and induces apoptosis in cancer cells. Neoplasia 3:278–286

    Article  PubMed  CAS  Google Scholar 

  20. Aggarwal B.B., Bhardwaj A., Aggarwal R.S., Seeram N.P., Shishodia S., Takada Y. (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 24:2783–2840

    PubMed  CAS  Google Scholar 

  21. Liu H., Radisky D.C., Nelson C.M., Zhang H., Fata J.E., Roth R.A. (2006) Mechanism of Akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2. Proc. Natl. Acad. Sci. USA 103:4134–4139

    Article  PubMed  CAS  Google Scholar 

  22. Balsara B.R., Pei J., Mitsuuchi Y., Page R., Klein-Szanto A., Wang H., Unger M., Testa J.R. (2004) Frequent activation of AKT in non-small cell lung carcinomas and preneoplastic bronchial lesions. Carcinogenesis 25:2053–2059

    Article  PubMed  CAS  Google Scholar 

  23. Ruggeri B.A., Huang L., Wood M., Cheng J.Q., Testa J.R. (1998) Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol. Carcinog. 21:81–86

    Article  PubMed  CAS  Google Scholar 

  24. Fernandes M.J., Iscove N.N., Gingras G., Calabretta B. (2000) Identification and characterization of the gene for a novel c-type lectin (CLECSF7) that maps near the natural killer gene complex on human chromosome 12. Genomics 69:263–270

    Article  PubMed  CAS  Google Scholar 

  25. Drickamer K. (1993) Evaluation of Ca2+-dependent animal lectins. Prog. Nucl. Acid Res. Mol. Biol. 45:207–232

    Article  CAS  Google Scholar 

  26. McGreal E.P., Miller J.L., Gordon S. (2005) Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr. Opin. Immunol. 17:18–24

    Article  PubMed  CAS  Google Scholar 

  27. Kemp T.J., Elzey B.D., Griffith T.S. (2003) Plasmacytoid dendritic cell-derived IFN-α induces TNF-related apoptosis-inducing ligand/Apo-2L-mediated antitumor activity by human monocytes following CpG oligodeoxynucleotide stimulation. J. Immunol. 171:212–218

    PubMed  CAS  Google Scholar 

  28. Santini S.M., Pucchio T.D., Lapenta C., Parlato S., Logozzi M., Belardelli F. (2003) A new type I IFN-mediated pathway for the rapid differentiation of monocytes into highly active dendritic cells. Stem Cells 21:357–362

    Article  PubMed  CAS  Google Scholar 

  29. Arce I., Roda-Navarro P., Montoya M.C., Hernanz-Falcon P., Puig-Kroger A., Fernandez-Ruiz E. (2001) Molecular and genomic characterization of human DLEC, a novel member of the C-type lectin receptor gene family preferentially expressed on monocyte-derived dendritic cells. Eur. J. Immunol. 31:2733–2740

    Article  PubMed  CAS  Google Scholar 

  30. Eswarakumar V.P., Lax I., Schlessinger J. (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16:139–149

    Article  PubMed  CAS  Google Scholar 

  31. L’Hote C.G., Knowles M.A. (2005) Cell responses to FGFR3 signaling: growth, differentiation and apoptosis. Exp. Cell. Res. 304:417–431

    Article  PubMed  CAS  Google Scholar 

  32. Logie A., Dunois-Larde C., Rosty C., Levrel O., Blanche M., Ribeiro A., Gasc J.M., Jarcano J., Werner S., Sastre-Garau X., Thiery J.P., Radvanyi F. (2005) Activating mutations of the tyrosine kinase receptor FGFR3 are associated with benign skin tumors in mice and humans. Human Mol. Genet. 14:1153–1160

    Article  CAS  Google Scholar 

  33. Pandit S.G., Govindraj P., Sasse J., Neame P.J., Hassell J.R. (2002) The fibroblast growth factor receptor, FGFR3, forms gradients of intact and degraded protein across the growth plate of developing bovine ribs. Biochem. J. 361:231–241

    Article  PubMed  CAS  Google Scholar 

  34. Chesi M., Brents L.A., Ely S.A., Bais C., Robbiani D.F., Mesri E.A., Kuehl W.M., Bergsagel P.L. (2001) Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma. Blood 97:729–736

    Article  PubMed  CAS  Google Scholar 

  35. Qian S., Somlo G., Zhou B., Zhu L., Mi S., Mo X., Cheung E.M., Qiu W., Lin R.J., Rossi J., Holtz M., Chu P., Yen Y. (2005) Ribozyme cleavage leads to decreased expression of fibroblast growth factor receptor 3 in human multiple myeloma cells, which is associated with apoptosis and downregulation of vascular endothelial growth factor. Oligonucleotides 15:1–11

    Article  PubMed  CAS  Google Scholar 

  36. Zhu L., Somlo G., Zhou B., Shao J., Bedell V., Slovak M.L., Liu X., Luo J., Yen Y. (2005) Fibroblast growth factor receptor 3 inhibition by short hairpin RNAs leads to apoptosis in multiple myeloma. Mol. Cancer Ther. 4:787–798

    Article  PubMed  CAS  Google Scholar 

  37. He X., Semenov M., Tamai K., Zeng X. (2004) LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131:1663–1677

    Article  PubMed  CAS  Google Scholar 

  38. Li Y., Lu W., He X., Schwartz A.L., Bu G. (2004) LRP6 expression promotes cancer cell proliferation and tumorigenesis by altering β-catenin subcellular distribution. Oncogene 23:9129–9135

    Article  PubMed  CAS  Google Scholar 

  39. Tamai K., Semenov M., Kato Y., Spokony R., Liu C., Katsuyama Y., Hess F, Saint-Jeannet J.P., He X. (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407:530–535

    Article  PubMed  CAS  Google Scholar 

  40. Benhaj K., Akcali K.C., Ozturk M. (2006) Redundant expression of canonical Wnt ligands in human breast cancer cell lines. Oncol. Rep. 15:701–707

    PubMed  CAS  Google Scholar 

  41. Wodarz A., Nusse R. (1998) Mechanisms of Wnt signaling in development. Annu. Rev. Cell. Dev. Biol. 14:59–88

    Article  PubMed  CAS  Google Scholar 

  42. Giles R.H., van Es J.H., Clevers H. (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta 1653:1–24

    PubMed  CAS  Google Scholar 

  43. Lustig B., Behrens J. (2003) The Wnt signaling pathway and its role in tumor development. J. Cancer Res. Clin. Oncol. 129:199–221

    PubMed  CAS  Google Scholar 

  44. Quaiser T., Anton R., Kuhl M. (2006) Kinases and G proteins join the Wnt receptor complex. Bioessays 28:339–343

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Jiazer Tsay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, SL., Liu, R.H., Sheu, JN. et al. Toxicogenomics of A375 human malignant melanoma cells treated with arbutin. J Biomed Sci 14, 87–105 (2007). https://doi.org/10.1007/s11373-006-9130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-006-9130-6

Keywords

Navigation