Skip to main content

Advertisement

Log in

Endothelial calcium signaling in rabbit arteries and its local alterations in early-stage atherosclerosis

  • Published:
Journal of Biomedical Science

Abstract

This study is to examine whether endothelial calcium signaling is different between atherosclerosis-prone thoracic aortas (TA) and atherosclerosis–resistant carotid arteries (CA) in normal rabbits and how it changes in early-stage atherosclerosis. Local endothelial calcium signaling was examined in arterial segments obtained from rabbits fed with normal or high-cholesterol diet for 1–4 weeks. Contrasting to normal CA, normal TA showed lower endothelial calcium signaling with more concentrated NF-κB in the endothelial nuclei. In the same hypercholesterolemic animal, fatty streak formation was much more prominent in TA than in CA. TA endothelial calcium signaling became augmented in the second week of hypercholesterolemia, being most pronounced in smooth regions adjacent to miniature fatty streaks. It was sporadically elevated even in regions away from any detectable TA fatty streak. When the entire TA was covered with fatty streaks in the fourth week of hypercholesteremia, endothelial calcium signaling returned to the original level. In comparison, CA endothelial calcium signaling was reduced around scattered fatty streaks. Reduced calcium signaling happened where CA fatty streaks were 150 µm long (covering 15–30 cells); and it extended to areas adjacent to larger fatty streaks. Moreover, NF-κB remained in the cytosol of endothelial cells covering CA fatty streaks. Our results indicate that inter-vascular differences in endothelial calcium signaling may provide partial explanation in their differential susceptibility in atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross R. (1999) Atherosclerosis, an inflammatory disease. N. Engl. J. Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  2. Tiefenbacher C.P., Friedrich S., Bleeke T., Vahl C., Chen X., Niroomand F. (2004) ACE inhibitors and statins acutely improve endothelial dysfunction of human coronary arterioles. Am. J. Physiol. Heart Circ. Physiol 286:H1425–H1432

    Article  PubMed  CAS  Google Scholar 

  3. Huang T.Y., Chu T.F., Chen H.I., Jen C.J. (2000) Heterogeneity of [Ca2+]i signaling in intact rat aortic endothelium. FASEB J. 14:797–804

    PubMed  CAS  Google Scholar 

  4. Huang T.Y., Chen H.I., Liu C.Y., Jen C.J. (2001) Endothelial [Ca2+]i is an integrating signal for the vascular tone in rat aortae. BMC Physiol 1:5

    Article  PubMed  CAS  Google Scholar 

  5. Jen C.J., Chan H.P., Chen H.I. (2002) Chronic exercise improves endothelial calcium signaling and vasodilatation in hypercholesterolemic rabbit femoral artery. Arterioscler. Thromb. Vasc. Biol 22:1219–1224

    Article  PubMed  CAS  Google Scholar 

  6. Jen C.J., Liu Y.F., Chen H.I. (2005) Short-term exercise training improves vascular function in hypercholesterolemic rabbit femoral artery. Chin. J. Physiol 48:79–85

    PubMed  Google Scholar 

  7. Blankenberg S., Barbaux S., Tiret L. (2003) Adhesion molecules and atherosclerosis. Atherosclerosis 170:191–203

    Article  PubMed  CAS  Google Scholar 

  8. Kempe S., Kestler H., Lasar A., Wirth T. (2005) NF-kappaB controls the global pro-inflammatory response in endothelial cells, evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res 33:5308–5319

    Article  PubMed  CAS  Google Scholar 

  9. Yang A.L., Jen C.J., Chen H.I. (2003) Effects of high cholesterol diet and parallel exercise training on the vascular function of rabbit aortas, a time course study. J. Appl. Physiol 95:1194–1200

    PubMed  CAS  Google Scholar 

  10. Glagov S., Zarins C., Giddens D.P., Ku D.N. (1988) Hemodynamics and atherosclerosis, insights and perspectives gained from studies of human arteries. Arch. Pathol. Lab. Med 112:1018–1031

    PubMed  CAS  Google Scholar 

  11. Tanaka E., Shimokawa H., Kamiuneten H., Eto Y., Matsumoto Y., Morishige K., et al. (2003) Disparity of MCP-1 mRNA and protein expressions between the carotid artery and the aorta in WHHL rabbits, one aspect involved in the regional difference in atherosclerosis. Arterioscler. Thromb. Vasc. Biol 23:244–250

    Article  PubMed  CAS  Google Scholar 

  12. Landmesser U., Hornig B., Drexler H. (2004) Endothelial function, a critical determinant in atherosclerosis? Circulation 109:II27–II33

    Article  PubMed  Google Scholar 

  13. Dart A.M., Chin-Dusting J.P. (1999) Lipids and the endothelium. Cardiovasc. Res 43:308–322

    Article  PubMed  CAS  Google Scholar 

  14. Glass C.K., Witztum J.L. (2001) Atherosclerosi, the road ahead. Cell 104:503–516

    Article  PubMed  CAS  Google Scholar 

  15. Berliner J.A., Watson A.D. 2005 () A role for oxidized phospholipids in atherosclerosis. N. Engl. J. Med 353:9–11

    Article  PubMed  CAS  Google Scholar 

  16. Schwenke D.C. (1995) Selective increase in cholesterol at atherosclerosis-susceptible aortic sites after short-term cholesterol feeding. Arterioscler. Thromb. Vasc. Biol 15:1928–1937

    PubMed  CAS  Google Scholar 

  17. Tozer E.C., Carew T.E. (1997) Residence time of low-density lipoprotein in the normal and atherosclerotic rabbit aorta. Circ. Res. 80:208–218

    PubMed  CAS  Google Scholar 

  18. Nava E., Farre A.L., Moreno C., Casado S., Moreau P., Cosentino F., et al. (1998) Alterations to the nitric oxide pathway in the spontaneously hypertensive rat. J. Hypertens 16:609–615

    Article  PubMed  CAS  Google Scholar 

  19. Dowell F.J., Martin W., Dominiczak A.F., Hamilton C.A. (1999) Decreased basal despite enhanced agonist-stimulated effects of nitric oxide in 12-week-old stroke-prone spontaneously hypertensive rat. Eur. J. Pharmacol. 379:175–182

    Article  PubMed  CAS  Google Scholar 

  20. Crauwels H.M., Van Hove C.E., Holvoet P., Herman A.G., Bult H. (2003) Plaque-associated endothelial dysfunction in apolipoprotein E-deficient mice on a regular diet, effect of human apolipoprotein AI. Cardiovasc. Res. 59:189–199

    Article  PubMed  CAS  Google Scholar 

  21. Passerini A.G., Polacek D.C., Shi C., Francesco N.M., Manduchi E., Grant G.R., et al. (2004) Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc. Natl. Acad. Sci. U S A 101:2482–2487

    Article  PubMed  CAS  Google Scholar 

  22. Iiyama K., Hajra L., Iiyama M., Li H., DiChiara M., Medoff B.D., et al. (1999) Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ. Res 85:199–207

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Science Council, TAIWAN ROC (NSC 93-2320-B-006-005, NSC 93-2320-B006-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chauying J. Jen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Hi., Huang, YC., Su, WH. et al. Endothelial calcium signaling in rabbit arteries and its local alterations in early-stage atherosclerosis. J Biomed Sci 14, 145–153 (2007). https://doi.org/10.1007/s11373-006-9125-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-006-9125-3

Keywords

Navigation