Skip to main content
Log in

Nutrient addition and warming alter the soil phosphorus cycle in grasslands: A global meta-analysis

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Grasslands are the most extensive vegetation type in the terrestrial ecosystem and have an important role in the soil phosphorus (P) cycle. Many nutrient addition and warming experiments have been conducted in grasslands; however, the global pattern of nutrient addition and experimental warming impacts on soil P cycle is unclear.

Methods

We conducted a meta-analysis of 68 publications to synthesize the mechanisms underlying global grassland ecosystem responses to nutrient addition and experimental warming.

Results

Our analysis indicated that nitrogen (N) addition reduced microbial biomass P (− 11.2%) but increased litter P concentration (+ 15.5%) and available P (+ 14.2%). Experimental warming reduced microbial biomass P (− 10.5%) and available P (− 6.7%) but increased litter P concentration (+ 46.2%). P addition increased available P (+ 222.3%) and microbial biomass P (+ 98.1%). The available P response to nutrient addition and experimental warming was more sensitive in temperate grasslands than in alpine grasslands. The responses of soil total and available P to nutrient addition depended on environmental conditions such as air temperature and soil pH.

Conclusion

Our results suggest that N addition may promote P mineralization and possibly stimulate the transformation of refractory or resistant forms of soil inorganic P, whereas experimental warming accelerates the P cycle by regulating plant acquisition and enzyme activity. Environmental factors (e.g., temperature, precipitation, pH) affect the soil P response to nutrient addition by altering microbial and enzymatic activities. It is crucial to understand the dynamic changes in soil microbial and enzyme activities to predict the P cycle in grassland soils in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2016YFA0600801), the Hundred Talents Program of Shaanxi Province (A289021701), the Natural Science Basic Research Plan in Shaanxi Province of China (2018JZ3002), the Special Fund from the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (A314021403-C9), and the Double First Class University Plan of NWSUAF (Z102021829). The funders had no role in the study design, data collection, data analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyou Yuan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible editor: Caixian Tang

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6794 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Tan, J., Shi, X. et al. Nutrient addition and warming alter the soil phosphorus cycle in grasslands: A global meta-analysis. J Soils Sediments 22, 2608–2619 (2022). https://doi.org/10.1007/s11368-022-03276-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-022-03276-y

Keywords

Navigation