Skip to main content
Log in

Long-term leaching prediction of constituents in coal bottom ash used as a structural fill material

  • Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

This study is aimed to assess the long-term leaching of inorganic constituents from structural fills composed of reused coal bottom ash in Korea and identify key parameters that affect the amount of the constituents leached.

Materials and methods

A model for the prediction of long-term leaching by percolation of stormwater through a structural fill is adopted and used. The long-term leaching model is applied to five field sites in Korea using site-specific parameters obtained for each site and coal bottom ash specific parameters determined using column studies for two coal bottom ash samples collected from coal-fired power plants.

Results and discussion

The long-term leaching of trace inorganic constituents, As, Cu, Sb, and Zn, is variable among the sites primarily due to the variation in the total amount of leachable constituents and application depth of a structural fill. First-order leaching rate constant is also one of the key parameters when the leaching rate is relatively small. Because of the significant variability in the leaching rate constants and application depths, the time for the leachate constituent concentration to reach half the initial value, t 50%, ranges from less than a year to more than hundreds of years for the studied sites and constituents.

Conclusions

The long-term leaching characteristics of the trace inorganic constituents are predicted to significantly vary by the type of reused bottom ash and the site conditions, suggesting the need to determine the model parameters in a case-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aalbers TG, Rood GA, Vermij PHM, Saft RJ, Broekman MH, Masereeuw P, Kamphuis C, Dekker PM, Valentijn EA (1996) Environmental quality of primary and secundary construction materials in relation to re-use and protection of soil and surface water. Report N. 771402007, National Institute for Public Health and the Environment (RIVM), The Netherlands

  • Arenas CG, Leiva C, Vilches LF, Cifuentes H, Rodríguez-Galán M (2015) Technical specifications for highway noise barriers made of coal bottom ash-based sound absorbing concrete. Constr Build Mater 95:585–591

    Article  Google Scholar 

  • Arenas CG, Marrero M, Leiva C, Solís-Guzmán J, Arenas LFV (2011) High fire resistance in blocks containing coal combustion fly ashes and bottom ash. Waste Manag 31:1783–1789

    Article  Google Scholar 

  • Asokbunyarat V, van Hullebusch ED, Lens PN, Annachhatre AP (2015) Coal bottom ash as sorbing material for Fe (II), Cu (II), Mn (II), and Zn (II) removal from aqueous solution. Water Air Soil Pollut 226:1–17

    Article  CAS  Google Scholar 

  • Benson CH, Bradshaw S (2011) User guideline for coal bottom ash and boiler slag in green infrastructure construction. University of Wisconsin, Madison, USA, Recycled Materials Resource Cencter

    Google Scholar 

  • Cornelis G, Johnson CA, Van Gerven T, Vandecasteele C (2008) Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review. Appl Geochem 23:955–976

    Article  CAS  Google Scholar 

  • Dalla Valle M, Codato E, Marcomini A (2007) Climate change influence on POPs distribution and fate: a case study. Chemosphere 67:1287–1295

    Article  CAS  Google Scholar 

  • DEC (2014) Survey Report 2014. Department Enterprise City, 283 Provincial assembly. Jeollannamdo, Republic of Korea, pp 1–9 (in Korean)

  • Depoi FS, Pozebon D, Kalkreuth WD (2008) Chemical characterization of feed coals and combustion-by-products from Brazilian power plants. Int J Coal Geol 76:227–236

    Article  CAS  Google Scholar 

  • Durgun D, Genc A (2009) Effects of coal properties on the production rate of combustion solid residue. Energy 34:1976–1979

    Article  CAS  Google Scholar 

  • Geetha S, Ramamurthy K (2010) Reuse potential of low-calcium bottom ash as aggregate through pelletization. Waste Manag 30:1528–1535

    Article  CAS  Google Scholar 

  • Goldman SJ, Jackson K, Bursztynsky TA (1986) Erosion and sediment control handbook. Mcgraw-Hill, New York

    Google Scholar 

  • Hjelmar O (1990) Leachate from land disposal of coal fly ash. Waste Manage Res 8:429–449

    Article  CAS  Google Scholar 

  • ISO (2007) Soil quality - Leaching procedures for subsequent chemical and ecotocicological testing of soil and soil materials Part 3: Up-flow percolation test. ISO/TS 21268–4. International Organization for Standardization

  • Jayaranjan MLD, Van Hullebusch ED, Annachhatre AP (2014) Reuse options for coal fired power plant bottom ash and fly ash. Rev Environ Sci Biotechnolo 13:467–486

    Article  CAS  Google Scholar 

  • Kim B, Prezzi M, Salgado R (2005) Geotechnical properties of fly and bottom ash mixtures for use in highway embankments. J Geotech Geoenviron Eng 131:914–924

    Article  CAS  Google Scholar 

  • Kosson D, Van der Sloot H, Sanchez F, Garrabrants A (2002) An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environ Eng Sci 19:159–204

    Article  CAS  Google Scholar 

  • KSEPC (2013) Status of coal ash generation. Korean South East Power Corportation. http://www.kosep.co.kr/kosep/fr/bo/board/main.do?menuCd=FN02011003. Accessed 2 April 2015 (in Korean)

  • Lee M (2011) 2011 Inspection of the government offices questionnaire report. Department of Enterprise Ciy, Jeonbuk, Republic of Korea. https://www.mslee.co.kr, pp 1–89 Acessed 5 May 2015 (in Korean)

  • Levandowski J, Kalkreuth W (2009) Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Paraná, Brazil. Int J Coal Geol 77:269–281

    Article  CAS  Google Scholar 

  • Liu G, Zhang H, Gao L, Zheng L, Peng Z (2004) Petrological and mineralogical characterizations and chemical composition of coal ashes from power plants in Yanzhou mining district, China. Fuel Process Technol 85:1635–1646

    Article  CAS  Google Scholar 

  • Meij R, Winkel HT (2007) The emissions of heavy metals and presistent organic pollutants from modern coal-fired power stations. Atmos Environ 41:9262–9272

    Article  CAS  Google Scholar 

  • Menendez E, Alvaro A, Argiz C, Parra J, Moragues A (2013) Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility. Bol Soc Esp Ceram Vidiro 52:296–304

    Article  CAS  Google Scholar 

  • MOLIT (2012) Groundwater management plan 2012–2021. Ministry of Land, Infrastructure and Transport, Republic of Korea, pp 1–160 (in Korean)

  • MOLIT, K-water (2014) 2014 Groundwater annual report. National Groundwater Information Center, pp 488–534 (in Korean)

  • Neupane G, Donahoe RJ (2013) Leachability of elements in alkaline and acidic coal fly ash samples during batch and column leaching tests. Fuel 104:758–770

    Article  CAS  Google Scholar 

  • Ratafia-Brown JA (1994) Overview of trace element partitioning in flames and furnaces of utility coal-fired boilers. Fuel Process Technol 39:139–157

    Article  CAS  Google Scholar 

  • Skousen J, Ziemkiewicz P, Yang JE (2012) Use of coal combustion by-products in mine reclamation: review of case studies in the USA. Geosyst Eng 15:71–83

    Article  Google Scholar 

  • Tiwari M, Sahu S, Bhangare R, Ajmal P, Pandit G (2014) Elemental characterization of coal, fly ash, and bottom ash using an energy dispersive X-ray fluorescence technique. Appl Radiat Isot 90:53–57

    Article  CAS  Google Scholar 

  • USEPA (2015) Hazardous and solid waste management system; disposal of coal combustion residuals from electric utilities; final rule, CFR Parts 257 and 261 [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER] RIN-2050-AE81. US Environmental Protection Agency, Federal Register, Washington, USA

  • Van der Sloot HA, Seignette PFAB, Meeussen JCL, Hjelmar O, Kosson DS (2008) A database, speciation modelling and decision support tool for soil, sludge, sediments, wastes and construction products: LeachXS™-Orchestra. Second international symposium on energy from biomass and waste, Nov 17–20 2008, Venice

  • Verschoor AJ, Lijzen JPA, van den Broek HH, Cleven RFMJ, Comans RNJ, Dijkstra JJ, Vermij PHM (2007) Kritische emissiewaarden voor bouwstoffen. Milieuhygienische onderbouwing en consequenties voor bouwmaterialen. Report N. 711701043, National Institute for Public Health and the Environment (RIVM), The Netherlands (in Dutch)

  • Wang W, Qin Y, Song D, Wang K (2008) Column leaching of coal and its combustion residues, Shizuishan, China. Int J Coal Geol 75:81–87

    Article  CAS  Google Scholar 

  • Webster E, Mackay D, Wania F (1998) Evaluating environmental persistence. Environ Toxicol Chem 17:2148–2158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study received financial support from the Geo-Advanced Innovative Action (GAIA) project of the Korea Environmental Industry and Technology Institute. We thank the Integrated Research Institute of Construction and Environmental Engineering, Seoul National University, and Water/Environment Research Team of Hyundai Engineering and Construction Co., LTD. for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoungphile Nam.

Additional information

Responsible editor: Fanghua Hao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Yu, G., Choi, Y. et al. Long-term leaching prediction of constituents in coal bottom ash used as a structural fill material. J Soils Sediments 17, 2742–2751 (2017). https://doi.org/10.1007/s11368-017-1709-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-017-1709-1

Keywords

Navigation