Skip to main content
Log in

The seasonal heavy metal signature and variations in the microbial mat (petola) of the Sečovlje Salina (northern Adriatic)

  • IASWS 2014: The Interactions Between Sediments and Water
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The Sečovlje Salina is a part of Sečovlje Salina Nature Park situated in south-western Slovenia (northern Adriatic). The key element of the centuries-old Slovenian tradition of salt production is the “petola”, i.e. the few-millimetre-thick microbial mat which covers the bottom of the crystallizing salt basins. Petola cultivation proceeds over the whole year, with seasonal variations of petola composition/characteristics. The purpose of this study was to investigate seasonal petola composition variability including heavy metals content.

Materials and methods

Petola samples from 2010 (rainy salt production season) and from 2009 (favourable weather conditions) were analyzed for pH, major elements and heavy metals (X-ray fluorescence method) and mineral composition (X-ray powder diffraction). The total organic carbon (TOC) and total nitrogen (TN) content of the petola were determined using a CHNS elemental analyzer. Seasonal variations in temperature, salinity and pH value of the brine were also determined.

Results and discussion

Quartz, halite, calcite, gypsum, aragonite and clay constitute the major fraction of the petola, while the organic matter content was low. The main mineral composition was associated with the base sediment while gypsum, aragonite and halite formed during crystallization processes. The increase of salinity and the decrease of organic matter were reflected in the elemental composition with highest (Ca, Cl, Mg, S) and lowest (Si, Al, Fe, K) summer concentrations. Similarly, a decrease in heavy metal concentrations (As, Cu, Cr, Mn, Ni, Pb, Zn) was also determined and was related to the lower organic matter and pH values present during this period.

Conclusions

Basic sediment composition, the brine salinity gradient, salt production processes, redox conditions and the content of organic matter contribute to seasonal variability of petola composition. These factors favourably affect the petola characteristics that allow manual (seasonal) gathering and contribute to the quality of natural salt from the Sečovlje Salina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agusa T, Kunito T, Sudaryanto A, Monirith I, Kan-Atireklap S, Iwata H, Ismail A, Sanguansin J, Muchtar M, Tana TS, Tanabe S (2007) Exposure assessment for trace elements from consumption of marine fish in Southeast Asia. Environ Pollut 145:766–777

    Article  CAS  PubMed  Google Scholar 

  • Anati D (1999) The salinity of hypersaline brines: concepts and misconceptions. Int J Salt Lake Res 8:55–70

    Article  Google Scholar 

  • Atkinson CA, Jolley DF, Simpson SL (2007) Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69:1428–1437

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food-chain. Environ Int 32:191–198

    Article  CAS  PubMed  Google Scholar 

  • Bhat UN, Khan AB (2011) Heavy metals: an ambiguous category of inorganic contaminants, nutrients and toxins. Res J Environ Sci 5:682–690

    Article  Google Scholar 

  • Carretero MI, Pozo M, Martín-Rubí JA, Pozo E, Maraver F (2010) Mobility of elements in interaction between artificial sweat and peloids used in Spanish spas. Appl Clay Sci 48:506–515

    Article  CAS  Google Scholar 

  • Chen CY, Stemberger RS, Klaue B, Blum JD, Pickhardt PC, Folt CL (2000) Accumulation of heavy metals in food web components across a gradient of lakes. Limnol Oceanogr 45:1525–1536

    Article  ADS  CAS  Google Scholar 

  • Christophoridis C, Dedepsidis D, Fytianos K (2009) Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. J Hazard Mater 168:1082–1091

    Article  CAS  PubMed  Google Scholar 

  • Cukrov N, Frančišković-Bilinski S, Hlača B, Barišić D (2011) A recent history of metal accumulation in the sediments of Rijeka harbor, Adriatic Sea, Croatia. Mar Pollut Bull 62:154–167

    Article  CAS  PubMed  Google Scholar 

  • Davis JS (2000) Structure, function, and management of the biological system for seasonal solar saltworks. Global Nest J 2:217–226

    Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. In: Hughes RN, Hughes D, Smith P (eds) Oceanogr Mar Biol. Aberdeen University Press, Aberdeen, pp 73–153

    Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  ADS  Google Scholar 

  • Défarge C, Trichet J, Jaunet A-M, Robert M, Tribble J, Sansone FJ (1996) Texture of microbial sediments revealed by cryo-scanning electron microscopy. J Sediment Res 66:935–947

    Google Scholar 

  • Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FM (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985

    Article  ADS  PubMed  Google Scholar 

  • Duffus JH (2002) “Heavy metals”–a meaningless term? Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Dupraz C, Visscher PT, Baumgartner LK, Reid PR (2004) Microbe-mineral interactions: early carbonate precipitation in hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:745–765

    Article  ADS  CAS  Google Scholar 

  • Faganeli J, Planinc R, Pezdič SB, Stegnar P, Ogorelec B (1991) Marine geology of the Gulf of Trieste (northern Adriatic): geochemical aspects. Mar Geol 99:93–108

    Article  ADS  CAS  Google Scholar 

  • Faganeli J, Pezdič J, Ogorelec B, Dolenec T, Čermelj B (1999) Salt works of Sečovlje (Gulf of Trieste, northern Adriatic)-a sedimentological and biogeochemical laboratory for evaporitic environments. RMZ Mater Geoenviron 46:491–499

    CAS  Google Scholar 

  • Farkas A, Salánki J, Specziár A, Varanka I (2001) Metal pollution as health indicator of lake ecosystems. Int J Occup Med Env 14:163–170

    CAS  Google Scholar 

  • Förstner U (1981) Metal pollution assessment from sediment analysis: metal pollution in the aquatic environment. Springer study edition. Springer, Berlin, pp 110–196

    Google Scholar 

  • Förstner U, Ahlf W, Calmano W, Kersten M, Salomons W (1986) Mobility of heavy metals in dredged harbor sediments. In: Sly P (ed) Sediments and water interactions. Springer, New York, pp 371–380

    Chapter  Google Scholar 

  • Glavaš N (2013) Sestava in pretvorbe petole in solinskega blata v Sečoveljskih solinah: doktorska disertacija=Composition and transformations of petola and saline mud from Sečovlje salina: doctoral dissertation, University of Ljubljana, Biotechnical faculty, Slovenia, p 159

  • Herrmann AG, Knake D, Schneider J, Peters H (1973) Geochemistry of modern seawater and brines from salt pans: main components and bromide distribution. Cont Mineral Petr 40:1–24

    Article  ADS  CAS  Google Scholar 

  • Huerta-Diaz MA, Delgadillo-Hinojosa F, Siqueiros-Valencia A, Valdivieso-Ojeda J, Reimer JJ, Segovia-Zavala JA (2012) Millimeter-scale resolution of trace metal distributions in microbial mats from a hypersaline environment in Baja California, Mexico. Geobiology 10:531–547

    Article  CAS  PubMed  Google Scholar 

  • Irving H, Williams RJP (1953) The stability of transition-metal complexes. J Chem Soc 6373:3192–3210

  • Jakimska A, Konieczka P, Namiesnik J, Skora K (2011) Bioaccumulation of metals in tissues of marine animals, part I: the role and impact of heavy metals on organisms. Pol J Environ Stud 20:1117–1125

    CAS  Google Scholar 

  • Jones RA, Mariani GM, Lee GF (1981) Evaluation of the significance of sediment‐associated contaminants to water quality, utilizing scientific information in environmental quality planning. American Water Resources Association, Minneapolis, pp 34–54

    Google Scholar 

  • Komar D, Lambaša Belak Ž, Dolenec T, Dolenec M, Vrhovnik P, Rogan Šmuc N (2013) Potentially toxic elements content in the surficial marine sediment (peloid) from Makirina bay (central Adriatic). E3S Web of Conferences 1, 16006

  • Korovessis NA, Lekkas TD (2009) Solar saltworks’ wetland function. Global Nest J 11:49–57

    Google Scholar 

  • Kovač N (2009) Chemical characterization of stromatolitic “petola” layer (Sečovlje salt-pans, Slovenia) using FT-IR spectroscopy. Annal Ser Hist Nat 19:95–102

    Google Scholar 

  • Kovač N, Glavaš N, Dolenec M, Rogan Šmuc N, Šlejkovec Z (2013) Chemical composition of natural sea salt from Sečovlje Salina (Gulf of Trieste, northern Adriatic). Acta Chim Slov 60:706–714

    PubMed  Google Scholar 

  • Kračun N (2006) Struktura in aktivnost mikrobne združbe vzdolž slanostnega gradienta v Sečoveljskih solinah: diplomsko delo, univerzitetni študij=Structure and activity of microbial community along salinity gradient of Sečovlje salterns: graduation thesis, university studies. University of Ljubljana, Biotechnical faculty, Slovenia, 52 p

  • Ladakis M, Dassenakis M, Pantazidou A (2006) Nitrogen and phosphorus in coastal sediments covered by Cyanobacteria mats. J Soil Sediment 6:46–54

    Article  CAS  Google Scholar 

  • Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, Cambridge

    Google Scholar 

  • Mihelčić G, Kniewald G, Ivanišević G, Čepelak R, Mihelčić V, Vdović N (2012) Physico-chemical characteristics of the peloid mud from Morinje Bay (eastern Adriatic coast, Croatia): suitability for use in balneotherapy. Environ Geochem Health 34:191–198

    Article  PubMed  Google Scholar 

  • Ogorelec B, Mišič M, Šercelj A, Cimerman F, Faganeli J, Stegnar P (1981) Sediment Sečoveljske soline. Geologija 24:179–216

    CAS  Google Scholar 

  • Ovsyanyi EI, Zaburdaev VI, Romanov AS (2004) On the application of the units of measurement of the amount and composition of matter in oceanology. Phys Oceanogr 14:243–254

    Article  Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640

    Article  CAS  PubMed  Google Scholar 

  • Sadiq M (1992) Toxic metal chemistry in marine environments. Marcel Dekker, New York

    Google Scholar 

  • Schneider J, Herrmann AG (1980) Saltworks-natural laboratories for microbiological and geochemical investigations during the evaporation of seawater. In: Coogan AH, Hauber L (eds) 5th Symposium on Salt. The Northern Ohio Geological Society, Ohio, pp 371–381

    Google Scholar 

  • Schüürmann G, Markert BA (1998) Ecotoxicology: ecological fundamentals, chemical exposure, and biological effects. In: Wiley J (ed) Spektrum Akademischer Verlag. Heidelberg, New York

  • Sieper H-P, Kupka H-J, Williams T, Rossmann A, Rummel S, Tanz N, Schmidt H-L (2006) A measuring system for the fast simultaneous isotope ratio and elemental analysis of carbon, hydrogen, nitrogen and sulfur in food commodities and other biological material. Rapid Commun Mass Spectrom 20:2521–2527

    Article  ADS  CAS  PubMed  Google Scholar 

  • Škrinjar P, Faganeli J, Ogrinc N (2012) The role of stromatolites in explaining patterns of carbon, nitrogen, phosphorus, and silicon in the Sečovlje saltern evaporation ponds (northern Adriatic Sea). J Soil Sediment 12:1641–1648

    Article  Google Scholar 

  • Tkavc R, Gostinčar C, Turk M, Visscher PT, Oren A, Gunde-Cimerman N (2011) Bacterial communities in the ‘petola’ microbial mat from the Sečovlje salterns (Slovenia). FEMS Microbiol Ecol 75:48–62

    Article  CAS  PubMed  Google Scholar 

  • Underwood GC (2010) Exopolymers (extracellular polymeric substances) in diatom-dominated marine sediment biofilms. In: Seckbach J, Oren A (eds) Microbial mats. Cellular origin, life in extreme habitats and astrobiology. Springer, The Netherlands, pp 287–300

    Google Scholar 

  • Veniale F, Bettero A, Jobstraibizer PG, Setti M (2007) Thermal muds: perspectives of innovations. Appl Clay Sci 36:141–147

    Article  CAS  Google Scholar 

  • Zhang C, Yu Z-G, Zeng G-M, Jiang M, Yang Z-Z, Cui F, Zhu M-Y, Shen L-Q, Hu L (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281

  • Zhiling J, Guangyu Y (2009) The promotion of salt quality through optimizing brine concentration a new technique “bidirectional brine concentration”. Global Nest J 1:56–63

    Google Scholar 

  • Zupančič N, Skobe S (2014) Anthropogenic environmental impact in the Mediterranean coastal area of Koper/Capodistria, Slovenia. J Soil Sediment 14:67–77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neli Glavaš.

Additional information

Responsible editor: Carolyn Oldham

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glavaš, N., Šmuc, N.R., Dolenec, M. et al. The seasonal heavy metal signature and variations in the microbial mat (petola) of the Sečovlje Salina (northern Adriatic). J Soils Sediments 15, 2359–2368 (2015). https://doi.org/10.1007/s11368-015-1273-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-015-1273-5

Keywords

Navigation