Skip to main content

Advertisement

Log in

Soil organic carbon stocks in Veracruz State (Mexico) estimated using the 1:250,000 soil database of INEGI: biophysical contributions

  • SOILS, SEC 1 • SOIL ORGANIC MATTER DYNAMICS AND NUTRIENT CYCLING • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

In this study, we quantified soil organic carbon (SOC) stocks and analyzed their relationship with biophysical factors and soil properties.

Materials and methods

The study region was Veracruz State, located in the eastern part of Mexico, covering an area of 72,410 km2. A soil database that contains physicochemical analyses of soil horizons such as carbon concentration data was the source of information used in this study. The database consisted of 163 soil profiles representing 464 genetic horizons. Statistical analysis was used to investigate the effect of each factor (climate, altitude, slope) on SOC stock to 0.50 m depth and to assess differences in the distribution of SOC stock in terms of soil depth (0.0–0.20, 0.20–0.40, 0.40–0.60, 0.60–0.80, 0.80–1.0 m) and land use. In order to compute the spatial distribution of SOC stock to 0.50 m depth based on the soil sampling location, the kriging method was used.

Results and discussion

Results indicated that SOC stock (0.50 m depth) ranged between 0.44 and 41.2 kg C m−2. Regression analysis showed that SOC stocks (0.50 m depth) are negatively correlated with temperature (r = −0.38; P < 0.001) and positively correlated with altitude (r = 0.40; P < 0.001) and slope (r = 0.40; P < 0.001). In addition, by multiple regression, temperature combined with precipitation explained more SOC stock variations (r = 0.43; P < 0.001) than the regression model with precipitation (r = 0.13; P = 0.16) alone. Also, slope combined with temperature and precipitation explained more SOC stock variations (r = 0.46; P < 0.001) than the regression model with slope alone. Forest lands, grasslands, and croplands have higher SOC stocks in the 0.0–0.20-m soil layer than in deeper layers. On average, forest lands, grasslands, croplands, and other lands (wetland and dunes) had a SOC stock of 13.6, 14.6, 15.1, and 8.5 kg C m−2 at 1 m depth, respectively. Soil color correlated (−0.25 ≤ r ≤ −0.89) with SOC content.

Conclusions

Overall, these results indicate the influence of major interactions between biophysical factors and SOC stocks. This research indicated that SOC stock decreased with soil depth, but with slight variations depending on land use. Thus, there remains a need for more SOC data that include an improved distribution of soil sampling points in order to entirely understand the contributions of biophysical factors to SOC stocks in Veracruz State.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams WA (1973) The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. J Soil Sci 24:10–17

    Article  Google Scholar 

  • Albaladejo J, Ortiz R, Garcia-Franco N, Ruiz-Navarro A, Almagro M, Garcia-Pintado J, Martinez-Mena M (2013) Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. J Soil Sediments 13(2):265–277

    Article  CAS  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow dominated region. Nature 438:303–309

    Article  CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Birkeland PW (1984) Soils and geomorphology. Oxford University Press, New York

    Google Scholar 

  • Callesen I, Liski J, Raulund-Rasmussen K, Olsson MT, Tau-Strand L, Vesterdal L, Westman CJ (2003) Soil carbon stores in Nordic well-drained forest soils—relationships with climate and texture class. Global Change Biol 9:358–370

    Article  Google Scholar 

  • Campos CA (2011) Distribución y caracterización del suelo. In: La Biodiversidad en Veracruz: Estudio de Estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Gobierno del Estado de Veracruz, Universidad Veracruzana, Instituto de Ecología, A. C. México, pp 69–84

  • Castillo-Campos G, Avendaño RS, Medina AME (2011) Flora y vegetación. In: La Biodiversidad en Veracruz: Estudio de Estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Gobierno del Estado de Veracruz, Universidad Veracruzana, Instituto de Ecología, A. C. México, pp 163–178

  • Chuai XW, Huang XJ, Wang WJ, Zhang M, Lai L, Liao QL (2012) Spatial variability of soil organic carbon and related factors in Jiangsu Province, China. Pedosphere 22:404–414

    Article  CAS  Google Scholar 

  • Dai WH, Huang Y (2006) Relation of soil organic matter concentration to climate and altitude in zonal soils of China. Catena 65:87–94

    Article  Google Scholar 

  • Eswaran H, Berg EVD, Reich P (1993) Organic carbon in soils of the world. Soil Sci Soc Am J 57:192–194

    Article  Google Scholar 

  • FAO-UNESCO (1974) Soil map of the world, 1:5,000,000. Vol. 1—legend. United Nations Educational, Scientific, and Cultural Organization, Paris

  • Fenton TE (1983) Mollisols. In: Wilding LP, Smeck NE, Hall GF (eds) Pedogenesis and soil taxonomy: 11 soil orders. Elsevier, Amsterdam, pp 125–163

    Chapter  Google Scholar 

  • Fernandez-Eguiarte A, Zavala-Hidalgo J, Romero CR (2009) Atlas climático digital de México. Centro de Ciencias de la Atmósfera. UNAM

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 4450:277–281

    Article  CAS  Google Scholar 

  • Ganuza A, Almendros G (2003) Organic carbon storage in soils of the Basque Country (Spain): the effect of climate, vegetation type and edaphic variables. Biol Fertil Soils 37:154–162

    CAS  Google Scholar 

  • Garcia-Pausas J, Casals P, Camarero L, Huguet C, Sebastià MT, Thompson R, Romanyà J (2007) Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography. Biogeochemistry 82:279–289

    Article  CAS  Google Scholar 

  • Garten CT, Post WM, Hanson PJ, Cooper LW (1999) Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains. Biogeochemistry 45:115–145

    Google Scholar 

  • Geissert KD, Enríquez FE (2011) Geomorfología. In: Biodiversidad en Veracruz: Estudio de Estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Gobierno del Estado de Veracruz, Universidad Veracruzana, Instituto de Ecología, A. C. México, pp 53–68

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    Article  CAS  Google Scholar 

  • Griffiths RP, Madritch MD, Swanson AK (2009) The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): implications for the effects of climate change on soil properties. Forest Ecol and Manag 257:1–7

    Article  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon storage and land use change: a meta analysis. Global Change Biol 8:345–360

    Article  Google Scholar 

  • Guo YY, Gong P, Amundson R, Yu Q (2006) Analysis of factors controlling soil carbon in the conterminous United States. Soil Sci Soc Am J 70:601–612

    Article  CAS  Google Scholar 

  • Homann PS, Sollins P, Chappell HN, Stangenberger AG (1995) Soil organic carbon in a mountainous, forested region: relation to site characteristics. Soil Sci Soc Am J 59:1468–1475

    Article  CAS  Google Scholar 

  • Homann PS, Kapchinske JS, Boyce A (2007) Relations of mineral-soil C and N to climate and texture: regional differences within the conterminous USA. Biogeochemistry 85:303–316

    Article  CAS  Google Scholar 

  • Hontoria C, Rodríguez-Murillo JC, Saa A (1999) Relationships between soil organic carbon and site characteristics in Peninsular Spain. Soil Sci Soc Am J 63:614–621

    Article  CAS  Google Scholar 

  • INEGI (Instituto Nacional de Estadística, Geografía e Informática) (1984) Cartas edafológicas del Estado de Veracruz, escala 1:250 000. México

  • INEGI (Instituto Nacional de Estadística, Geografía e Informática) (2002) Carta de uso del suelo y vegetación, serie III, escala 1:250 000. México

  • INEGI (Instituto Nacional de Estadística, Geografía e Informática) (2004) Información Nacional sobre Perfiles de Suelos, versión 1.2. Aguascalientes, Ags. México

  • Ipcc WGI (2007) Climate change: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jenny H (1980) The soil resources. Springer, New York

    Book  Google Scholar 

  • Jiao JG, Yang LZ, Wu JX, Wang HQ, Li HX, Ellis EC (2010) Land use and soil organic carbon in China’s village landscapes. Pedosphere 20:1–14

    Article  CAS  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Johnston CA, Groffman P, Breshears DD, Cardon ZG, Currie W, Emanuel W, Gaudinski J, Jackson RB, Lajtha K, Nadelhoffer K, Nelson D Jr, Post WM, Retallack G, Wielopolski L (2004) Carbon cycling in soil. Front Ecol Environ 2:522–528

    Article  Google Scholar 

  • Kleber M (2010) What is recalcitrant soil organic matter? Environ Chem 7:320–332

    Article  CAS  Google Scholar 

  • Knops JMH, Bradley KL (2009) Soil carbon and nitrogen accumulation and vertical distribution across a 74-year chronosequence. Soil Sci Soc Am J 73:2096–2104

    Article  CAS  Google Scholar 

  • Konen ME, Burras CL, Sandor JA (2003) Organic carbon, texture, and quantitative color measurement relationships for cultivated soils in north central Iowa. Soil Sci Soc Am J 67:1823–1830

    Article  CAS  Google Scholar 

  • Lal R (2002) Soil carbon dynamics in cropland and rangeland. Environ Pollut 116:353–362

    Article  CAS  Google Scholar 

  • Lal R (2009) Challenges and opportunities in soil organic matter research. Eur J Soil Sci 60:158–169

    Article  CAS  Google Scholar 

  • Lettens S, van Orshoven J, van Wesemael B, Muys B (2004) Soil organic and inorganic carbon contents of landscape units in Belgium derived using data from 1950 to 1970. Soil Use Manag 20:40–47

    Article  Google Scholar 

  • Lettens S, van Orshoven J, van Wesemael B, De Vos B, Muys B (2005) Stocks and fluxes of soil organic carbon for landscape units in Belgium derived from heterogeneous data sets for 1990 and 2000. Geoderma 127:11–23

    Article  CAS  Google Scholar 

  • Liu DW, Wang ZM, Zhang B, Song KS, Li XY, Li JP, Li F, Duan HT (2006) Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China. Agric Ecosyst Environ 113:73–81

    Article  CAS  Google Scholar 

  • Liu Z, Shao M, Wang Y (2011) Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agric Ecosyst Environ 142:184–194

    Article  Google Scholar 

  • Lugato E, Paustian K, Giardini L (2007) Modelling soil carbon dynamics in two long-term experiments of north-eastern Italy. Agric Ecosyst Environ 120:423–432

    Article  CAS  Google Scholar 

  • Martin D, Lal T, Sachdev CB, Sharma JP (2010) Soil organic carbon storage changes with climate change, landform and land use conditions in Garhwal hills of the Indian Himalayan mountains. Agric Ecosyst Environ 138:64–73

    Article  CAS  Google Scholar 

  • Miller AJ, Amundson R, Burke IC, Yonker CM (2004) The effect of climate and cultivation on soil organic C and N. Biogeochemistry 67:57–72

    Article  CAS  Google Scholar 

  • Morari F, Lugato E, Berti A, Giardini L (2006) Long term effects of recommended management practices on soil carbon changes and sequestration in north-eastern Italy. Soil Use Manag 22:71–81

    Article  Google Scholar 

  • Muñoz-Rojas M, Jordán A, Zavala LM, De la Rosa D, Abd-Elmabod SK, Anaya-Romero M (2012) Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain). Solid Earth 3:375–386

    Article  Google Scholar 

  • Nieder R, Richter J (2000) C and N accumulation in arable soils of West Germany and its influence on the environment—developments 1970 to 1998. J Plant Nutr Soil Sci 163:65–72

    Article  CAS  Google Scholar 

  • Oueslati I, Allamano P, Bonifacio E, Claps P (2013) Vegetation and topographic control on spatial variability of soil organic carbon. Pedosphere 23:48–58

    Article  CAS  Google Scholar 

  • Pan C, Zhao H, Zhao X, Han H, Wang Y, Li J (2013) Biophysical properties as determinants for soil organic carbon and total nitrogen in grassland salinization. PLoS ONE 8(1):e54827. doi:10.1371/journal.pone.0054827

    Article  CAS  Google Scholar 

  • Pandey CB, Chaudhari SK (2010) Soil and nutrient losses from different land uses and vegetative methods for their control on hilly terrain of South Andaman. Indian J Agr Sci 80:399–404

    Google Scholar 

  • Paul EA, Paustian K, Elliott ET, Cole CV (1997) Soil organic matter in temperate agroecosystems. CRC, New York

    Google Scholar 

  • Percival HJ, Parfitt RL, Scott NA (2000) Factors controlling soil carbon levels in New Zealand grasslands: is clay content important? Soil Sci Soc Am J 64:1623–1630

    Article  CAS  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  CAS  Google Scholar 

  • Quideau SA, Chadwick QA, Benesi A, Graham RC, Anderson MA (2001) A direct link between forest vegetation type and soil organic matter composition. Geoderma 104:41–60

    Article  CAS  Google Scholar 

  • Raich JW, Russell AE, Vitousek PM (1997) Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawaii. Ecology 78:707–721

    Google Scholar 

  • Ros GH, Hanegraaf MC, Hoffland E, van Reimsdijk WH (2011) Predicting soil N mineralization: relevance of organic matter fractions and soil properties. Soil Biol Biochem 43:1714–1722

    Article  CAS  Google Scholar 

  • Ruiz-Sinoga JD, Pariente S, Romero-Diaz A, Martinez-Murillo JF (2012) Variability of relationships under between soil organic carbon and some soil properties in Mediterranean rangelands under different climatic conditions (South of Spain). Catena 94:17–25

    Article  CAS  Google Scholar 

  • SAS Institute Inc (2000) SAS user’s guide: statistic. SAS Institute, Inc, Cary

    Google Scholar 

  • Schoeneberger PJ, Wysocki DA, Benham EC, Broderson WD (2002) Field book for describing and sampling soil. Version 2.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln

  • Schrumpf M, Guggenberger G, Valarezo C, Zech W (2001) Tropical montane rain forest soils. Development and nutrient status along an altitudinal gradient in the southern Ecuadorian Andes. Erde 132:43–59

    Google Scholar 

  • Segnini A, Posadas A, Quiroz R, Milori DMBP, Vaz CMP, Martin-Neto L (2011) Soil carbon stocks and stability across an altitudinal gradient in southern Peru. J Soil Water Conserv 66:213–220

    Article  Google Scholar 

  • Shen W, Jenerette GD, Hui D, Phillips RP, Ren H (2008) Effects of changing precipitation regimes on dryland soil respiration and C pool dynamics at rainfall event, seasonal and interannual scales. J Geophys Res 113, G03024. doi:10.1029/2008JG000685

    Google Scholar 

  • Singh SK, Pandey CB, Sidhu GS, Sarkar D, Sagar R (2011) Concentration and stock of carbon in the soils affected by land uses and climates in the western Himalaya, India. Catena 87:78–89

    Article  CAS  Google Scholar 

  • Sleutel S, De Neve S, Singier B, Hofman G (2006) Organic C levels in intensively managed arable soils—long term regional trends and characterization of fractions. Soil Use Manag 22:188–196

    Article  Google Scholar 

  • Smith P, Fang C, Dawson JJC, Moncreiff JB (2008) Impact of global warming on soil organic carbon. Adv Agron 97:1–43

    Article  CAS  Google Scholar 

  • Smith P, Davies CA, Ogle S, Zanchi G, Bellarby J, Bird N, Boddey RM, McNamara NP, Powlson D, Cowie A, van Noordwijk M, Davis SC, Richter DB, Krizanowski L, van Wijk MT, Stuart J, Kirton A, Eggar D, Newton-Cross G, Adhya TK, Braimoh AK (2012) Towards an integrated global framework to assess the impacts of land use and management change on soil carbon. Current capability and future vision. Global Change Biol 18:2089–2101

    Article  Google Scholar 

  • Sombroek WG, Nachtergaele FO, Hebel A (1993) Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio 22:417–426

    Google Scholar 

  • Soto EM, Geissert KD (2011) Geografía. In: La Biodiversidad en Veracruz: Estudio de Estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Gobierno del Estado de Veracruz, Universidad Veracruzana, Instituto de Ecología, A. C. México, pp 31–34

  • Soto EM, Giddings BLE (2011) Clima. In: La Biodiversidad en Veracruz: Estudio de Estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Gobierno del Estado de Veracruz, Universidad Veracruzana, Instituto de Ecología, A. C. México, pp 35–52

  • Spain AV (1990) Influence of environmental conditions and some soil chemistry properties on the carbon and nitrogen contents of some tropical Australian rainforest soils. Aust J Soil Res 28:825–839

    Article  CAS  Google Scholar 

  • Stewart VI, Adams WA, Abdulla HH (1970) Quantitative pedological studies on soils derived from Silurian mudstones. II. The relationship between stone content and the apparent density of the fine earth. J Soil Sci 21:248–255

    Article  Google Scholar 

  • Strickland MS, Callaham MA, Davies CA, Lauber CL, Raminez R, Richter DD, Fierer N, Bradford MA (2010) Rates of in situ carbon mineralization in relation to land-use, microbial community and edaphic characteristics. Soil Biol Biochem 42:260–269

    Article  CAS  Google Scholar 

  • Suuster E, Ritz C, Roostalu H, Kölli R, Astover A (2012) Modelling soil organic carbon concentration of mineral soils in arable land using legacy soil data. Eur J Soil Sci 63:351–359

    Article  CAS  Google Scholar 

  • Tate KR (1992) Assessment, based on a climosequence of soil in tussock grasslands, of soil carbon storage and release in response to global warming. J Soil Sci 43:697–707

    Article  CAS  Google Scholar 

  • Townsend AR, Vitousek PM, Trumbore SE (1995) Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii. Ecology 76:721–733

    Article  Google Scholar 

  • Van Meirvenne M, Pannier J, Hofman G, Louwagie G (1996) Regional characterization of the long-term change in soil organic carbon under intensive agriculture. Soil Use Manag 12:86–94

    Article  Google Scholar 

  • Vitousek PM, Chadwick OA, Matson P, Allison S, Derry L, Kettley L, Luers A, Mecking E, Monastra V, Porder S (2003) Erosion and the rejuvenation of weathering derived nutrient supply in an old tropical landscape. Ecosystems 6:762–772

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang HQ, Hall CAS, Cornell JD, Hall MHP (2002) Spatial dependence and the relationship of soil organic carbon and soil moisture in the Luquillo Experimental Forest, Puerto Rico. Landscape Ecol 17:671–684

    Article  Google Scholar 

  • Wang S, Huang M, Shao X, Mickler RA, Li K, Ji J (2004) Vertical distribution of soil organic carbon in China. Environ Manage 33:S200–S209

    Article  Google Scholar 

  • Wang DD, Shi XZ, Wang HJ, Weindorf DC, Yu S, Sun WX, Ren HY, Zhao YC (2009) Scale effect of climate on soil organic carbon in the uplands of Northeast China. J Soil Sediments 10:1007–1017

    Article  CAS  Google Scholar 

  • Wang S, Wang X, Ouyang Z (2012) Effects of land use, climate, topography and soil properties on regional soil organic carbon and total nitrogen in the upstream watershed of Miyun Reservoir, North China. J Environ Sci 24:387–395

    Article  CAS  Google Scholar 

  • Wills SA, Burras CL, Sandor JA (2007) Prediction of organic carbon content using field and laboratory measurements of soil color. Soil Sci Soc Am J 71:380–388

    Article  CAS  Google Scholar 

  • Zimmermann M, Meir P, Silman MR, Fedders A, Gibbon A, Malhi Y, Urrego DH, Bush MB, Feeley KJ, Garcia KC, Dargie GC, Farfan WR, Goetz BP, Johnson WT, Kline KM, Modi AT, Rurau NMQ, Staudt BT, Zamora F (2010) No differences in soil carbon stocks across the tree line in the Peruvian Andes. Ecosystems 13:62–74

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work would not have been possible without the aid from the INECOL 20030/10124 project from Instituto de Ecología, A. C. We would like thank Norma Corona Callejas for technical assistance. Finally, we are grateful to two anonymous reviewers for the excellent comments and suggestions to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Campos C..

Additional information

Responsible editor: Weixin Cheng

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos C., A., Aguilar S., G. & Landgrave, R. Soil organic carbon stocks in Veracruz State (Mexico) estimated using the 1:250,000 soil database of INEGI: biophysical contributions. J Soils Sediments 14, 860–871 (2014). https://doi.org/10.1007/s11368-014-0851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-014-0851-2

Keywords

Navigation