Skip to main content
Log in

Risk assessment of Arbutus unedo L. fruits from plants growing on contaminated soils in the Panasqueira mine area, Portugal

  • POTENTIALLY HARMFUL ELEMENTS IN SOIL-PLANT INTERACTIONS
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

In the Panasqueira mine area, Arbutus unedo L. (arbutus tree) grows on soils developed on waste materials and on soils impacted by mining activity. The arbutus berry brandy is considered a product with economic value. The aims of this study were to evaluate the biogeochemical impact of the mining activity on soils and arbutus trees, to assess the possible risks associated with human consumption of the fruits and the derived brandy, and to evaluate the potential of the arbutus tree in phytostabilization.

Materials and methods

Soil samples (10–15 cm deep) developed on waste materials, on schists affected by seepage water or treatment plant effluents and on colluvium-alluvium materials were characterized (fraction <2 mm) for pH, particle size distribution, organic carbon (Corg), cation exchange capacity (CEC) and NPK by classical methodologies. Plant (A. unedo) samples (roots, leaves and twigs, and fruits) were collected at the same sites as the sampled soils, washed with tap and distilled water and dried at 40 °C. The elements’ concentrations in soils (total fraction—four-acid digestion and available fraction—diethylenetriaminepentaacetic acid extraction), plants (ashing followed by acid digestion) and brandy samples produced with fruits collected on contaminated and non-contaminated sites were determined by inductively coupled plasma atomic emission spectroscopy.

Results and discussion

The soils are mainly acid, silty loam, with variable values for Corg, CEC and NPK. They are contaminated with As (158–7,790 mg/kg), Cd (0.6–79 mg/kg), Cu (51–4,080 mg/kg), W (19–1,450 mg/kg) and Zn (142–12,300 mg/kg). The available fraction of the soils is quite variable between <0.04 and 76 % of the total, depending on the element. Trace elements’ concentrations, in leaves and twigs, are within the normal range for plants, except for Cd and Zn that, in some samples, are above the normal values, but without phytotoxic symptoms. Trace elements’ concentrations in fruits are low. The calculated hazard quotient for all trace elements in arbutus berry was <0.1. In the brandy, elemental concentrations are within the legal standards, except for Pb, whose higher concentrations may result from distillery equipment.

Conclusions

According to the EC 466/2001 legislation and with a hazard quotient of <1, the arbutus berry consumption does not constitute health risks for humans. The fruits can be used to produce local brandy. The concentration of copper in brandy is within the range established by the Portuguese legislation. Arbutus unedo can be used in the phytostabilization programs in the Panasqueira area, for it is a pioneer species and a non-accumulator of trace elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abreu MM, Magalhães MCF (2009) Phytostabilization of soils in mining areas. Case studies from Portugal. In: Aachen L, Eichmann P (eds) Soil remediation. Nova Science Publishers, New York, pp 297–344

    Google Scholar 

  • Abreu MM, Tavares MT, Batista MJ (2008) Potencial use of Erica andevalensis and Erica australis in phytoremediation of sulphide mine environmentes: São Domingos, Portugal. J Geochem Explor 96:210–222

    Article  CAS  Google Scholar 

  • Abreu MM, Santos ES, Magalhães MCF, Fernandes E (2012) Trace elements tolerance, accumulation and translocation in Cistus populifolius, Cistus salviifolius and their hybrid growing in polymetallic contaminated mine areas. J Geochem Explor 123:52–60

    Article  CAS  Google Scholar 

  • Activation Laboratories (2010a) 1H - total digestion - ICP, INAA. http://www.actlabs.com/page.aspx?page=506&app=226&cat1=549&tp=12&lk=no&menu=64&print=yes. Accessed May 2010

  • Activation Laboratories (2010b) 2D - vegetation ash - ICP/MS. http://www.actlabs.com/page.aspx?page=538&app=226&cat1=549&tp=12&lk=no&menu=64&print=yes. Accessed May 2010

  • Afkir S, Nguelefack TB, Aziz M, Zoheir J, Cuisinaud G, Bnouham M, Mekhfi H, Legssyer A, Lahlou S, Ziyyat A (2008) Arbutus unedo prevents cardiovascular and morphological alterations in L-NAME-induced hypertensive rats. Part I: cardiovascular and renal hemodynamic effects of Arbutus unedo in L-NAME-induced hypertensive rats. J Ethnopharmacol 116:288–295

    Article  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (2005) Toxicological profile for tungsten. U.S. Department of Health Service. Available via DIALOG. http://www.atsdr.cdc.gov/toxprofiles/ tp186-pdf. Accessed September 2007

  • Alarcão-e-Silva M, Leitão AEB, Azinheira HG, Leitão MCA (2001) The Arbutus berry: studies on its color and chemical characteristics at two mature stages. J Food Compos Anal 14:27–35

    Article  Google Scholar 

  • Alves C, Ferreira E, Macedo M, Negreiro F, Salgado M, Silva C (2006) Dados epidemiológicos sobre a obesidade em Portugal. Poster 10º Congresso Português de Obesidade, Porto. http://www.eurotrials.com/contents/files/publicacao_ficheiro_68_1.pdf. Accessed July 2013

  • ASTSWMO (2011) Tungsten issues paper (CAS #7440-33-7) version 2.0 final. Federal Facilities Research Center Policy & Technology Focus Group. http://www.astswmo.org/Files/Policies_and_Publications/Federal_Facilities/2011-02_FINAL_Tungsten_Issues_2-0.pdf. Accessed July 2013

  • Ávila PF, Ferreira da Silva E, Salgueiro AR, Farinha JA (2008) Geochemistry and mineralogy of mill tailings impoundments from the Panasqueira mine (Portugal): implications for surrounding environment. Mine Water Environ 27:210–224

    Article  Google Scholar 

  • Barros L, Carvalho AM, Morais JS, Ferreira ICFR (2010) Strawberry-tree, blackthorn and rose fruits: detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chem 120:247–254

    Article  CAS  Google Scholar 

  • Bu-Olayan AH, Thomas BV (2009) Translocation and bioaccumulation of trace metals in desert plants of Kuwait Governorates. Res J Environ Sci 3:581–587

    Article  CAS  Google Scholar 

  • Catarino S, Curvelo-Garcia AS, Bruno de Sousa R (2008) Revisão: elementos contaminantes nos vinhos. Ciência Téc Vitiv 23:2–19

    Google Scholar 

  • Cavey G, Gunning D (2006) Panasqueira Mine – Distrito de Castelo Branco. Updated technical report. Primary Metals Inc., Orequest, Castelo Branco, Portugal

    Google Scholar 

  • CCME (2007) Canadian Environmental Quality Guidelines for the Protection of Environmental and Human Health: summary tables (updated September 2007). Council of Ministers of the Environment, Winnipeg

    Google Scholar 

  • Chao TT (1972) Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride. Soil Sci Soc Am 36:762–768

    Article  Google Scholar 

  • Commission of the European Communities (2001) Commission regulation (EC) no. 466/2001. Official Journal of the European Communities 10.03.2001 L 77:1–13

  • Corrêa de Sá A, Naique R, Edmundo A (1999) As Minas da Panasqueira: 100 anos de história mineira. Boletim das Minas 36:3–22

    Google Scholar 

  • De Endredy AS (1963) Estimation of free iron oxides in soils and clays by photolytic methods. Clay Mineral Bull 9:209–217

    Article  Google Scholar 

  • Decreto-Lei no. 238/2000. Diário da República, Série I-A no. 238 de 26 de Setembro de 2000:5145-5147

  • DGRF (2005) Plano Regional de Ordenamento Florestal – Beira Interior Norte. Ministério da Agricultura do Desenvolvimento Rural e das Pescas, Lisboa

    Google Scholar 

  • Égner H, Riehm H, Domingo WR (1960) Untersuchhungen uber die chemiche boden: Analyse als grundlage fur die beurteilung der nahrston ffzustandes der boden. II. Chemiche extraktions, metehoden zur phosphor, und kaliumbestimmung. Kungl Lantbrukshoegst 26:199–215

    Google Scholar 

  • El Haouari M, López JJ, Mekhfi H, Rosado JA, Salido GM (2007) Antiaggregant effects of Arbutus unedo extracts in human platelets. J Ethnopharmacol 113:325–331

    Article  Google Scholar 

  • FOREGS (2005) Forum of the European Geological Survey Directors. Geochemical Atlas of Europe, Geological Survey of Finland, Espoo

    Google Scholar 

  • Godinho B (2008) Avaliação da qualidade ambiental da envolvente das Minas da Panasqueira. Vertente solo-água-Arbutus unedo. Um caso de estudo com orientação ambiental e social. MSc. Dissertation, ISA, Technical University of Lisbon

  • Greenwood NN, Earnshaw A (1995) Chemistry of the elements. Butterworth-Heinemann, Oxford

    Google Scholar 

  • INIA – LQARS (2000) Manual de Fertilização das culturas. Laboratório Químico Agrícola Rebelo da Silva (ed), Lisboa

  • IUSS Working Group WRB (2007) World Reference Base for Soil Resources 2006, first update 2007. World soil resources reports no. 103, FAO, Rome

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC, Boca Raton

    Google Scholar 

  • Keeney DR, Nelson DW (1982) Nitrogen inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. American Society Agronomy, Inc. and Soil Science Society of America, Inc., Madison, pp 643–669

    Google Scholar 

  • Koutsospyros A, Braida W, Christodoulatos C, Dermatas D, Strigul N (2006) A review of tungsten: from environmental obscurity to scrutiny. J Hazard Mater 136:1–19

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley

    Google Scholar 

  • Malheiro R, Sá O, Pereira E, Aguiar C, Baptista P, Pereira JA (2012) Arbutus unedo L. leaves as source of phytochemicals with bioactive properties. Ind Crops and Prod 37:473–478

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao F (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotech 14:277–282

    Article  CAS  Google Scholar 

  • Mekhfi H, El Haouari M, Bnouham M, Aziz M, Ziyyat A, Legssyer A (2006) Effects of extracts and tannins from Arbutus unedo leaves on rat platelet aggregation. Phytother Res 20:135–139

    Article  CAS  Google Scholar 

  • Mendez OM, Maier RM (2008) Phytoestabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Persp 116:278–282

    Article  CAS  Google Scholar 

  • Molina M, Pardo-de-Santayana M, Aceituno L, Morales R, Tardío J (2011) Fruit production of strawberry tree (Arbutus unedo L.) in two Spanish forests. Forestry 84:419–429

    Article  Google Scholar 

  • Monaci F, Leidi EO, Mingorance MD, Valdes B, Oliva RS, Bargagli R (2011) Selective uptake of major and trace elements in Erica andevalensis, an endemic species to extreme habitats in the Iberian Pyrite Belt. J Environ Sci 23:444–452

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Peñalosa JM, Carpena-Ruiz RO, Esteban E (2008) Comparison of arsenic resistance in Mediterranean woody shrubs used in restoration activities. Chemosphere 71:466–473

    Article  Google Scholar 

  • National Research Council (NRC) (2005) Mineral tolerance of animals. National Academy Press, Washington, DC

    Google Scholar 

  • Noronha JPC (2001) Metabolitos Secundários do Fruto de Arbutus unedo L. (Medronho). PhD thesis. Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologias, Lisboa

    Google Scholar 

  • OIV (2005) Recueil des methods internationals d’analyse des vins et des môuts. Organisation International de la Vigne et du Vin, Paris

    Google Scholar 

  • Oliveira I, Baptista P, Bento A, Pereira JA (2011) Arbutus unedo L. and its benefits on human health. J Food Nutr Res 50:73–85

    CAS  Google Scholar 

  • Özcan MM, Haciseferoğullari H (2007) The strawberry (Arbutus unedo L.) fruits: chemical composition, physical properties and mineral contents. J Food Eng 78:1022–1028

    Article  Google Scholar 

  • Pallauf K, Rivas-Gonzalo JC, del Castillo MD, Cano MP, Pascual-Teresa S (2008) Characterization of the antioxidant composition of strawberry tree (Arbutus unedo L.) fruits. J Food Compos Anal 21:273–281

    Article  CAS  Google Scholar 

  • Póvoas I, Barral MF (1992) Métodos de Análise de Solos. Série de Ciências Agrárias. Instituto de Investigação Cientifica Tropical. Ministério do Planeamento e da Administração do Território, Secretaria de Estado da Ciência e Tecnologia, Lisboa

  • Prasad MN, Freitas HMO (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Article  Google Scholar 

  • Pratas J, Prasad MNV, Freitas H, Conde L (2005) Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. J Geochem Explor 85:99–107

    Article  CAS  Google Scholar 

  • Pyatt FB, Pyatt AJ (2004) The bioaccumulation of tungsten and copper by organisms inhabiting metalliferous areas in North Queensland, Australia: an evaluation of potential health implications. J Environ Health Res 3:13–18

    Article  Google Scholar 

  • Ruiz-Rodríguez BM, Morales P, Fernández-Ruiz V, Sanchez-Mata MC, Cámara M, Díez-Marqués C, Pardo-de-Santayana M, Molina M, Tardío J (2011) Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data. Food Res Int 44:1244–1253

    Article  Google Scholar 

  • Santo DE, Galego L, Gonçalves T, Quintas C (2012) Yeast diversity in the Mediterranean strawberry tree (Arbutus unedo L.) fruits’ fermentations. Food Res Int 47:45–50

    Article  CAS  Google Scholar 

  • Santos ES, Abreu MM, Nabais C, Magalhães MCF (2012) Trace element distribution in soils developed on gossan mine wastes and Cistus ladanifer L. tolerance and bioaccumulation. J Geochem Explor 123:45–51

    Article  CAS  Google Scholar 

  • Silva JS (2007) Árvores e Florestas de Portugal. Do Castanheiro ao Teixo. As outras espécies florestais. Fundação Luso-Americana, Público, Liga de Protecção da Natureza, Lisboa

  • Soufleros EH, Mygdalia SA, Natskoulis P (2005) Production process and characterization of the traditional Greek fruit distillate “Koumaro” by aromatic and mineral composition. J Food Compos Anal 18:699–716

    Article  CAS  Google Scholar 

  • Srivastava PC, Gupta UC (1996) Trace elements in crop production. Science Publishers, Lebanon, NH, USA

    Google Scholar 

  • Thadeu D (1951) Geologia do Couto Mineiro da Panasqueira. Comun Serv Geol Portugal 32:5–64

    Google Scholar 

  • U.S. EPA (1989) Risk assessment guidance for superfund volume I human health evaluation manual (part A) interim final. Chapters 6 and 8: risk characterization. EPA/540/1-89/002. Office of Emergency and Remedial Response, Washington, DC. http://www.epa.gov/swerrims/riskassessment/ragsa/index.htm. Accessed July 2010

  • U.S. EPA (1996) Copper cyanide (CASRN 544-92-3). Integrated risk information system. http://www.epa.gov/iris/subst/0029.htm. Accessed July 2009

  • U.S. EPA (2000) Supplementary guidance for conducting health risk assessment of chemical mixtures. EPA/630/R-00/002. http://www.epa.gov/raf/publications/pdfs/CHEM_MIX_08_2001.PDF. Accessed July 2013

  • U.S. EPA (2002) Cadmium compounds. Technology Transfer Network - Air Toxic Web Site. Hazard summary. Created in April 1992 and revised in January 2000. http://www.epa.gov/ttnatw01/hlthef/cadmium.html. Accessed July 2009

  • U.S. EPA (2005) Zinc and compounds (CASRN 7440-66-6). Integrated risk information system. http://www.epa.gov/iris/subst/0426.htm#reforal. Accessed July 2009

  • U.S. EPA (2012) Arsenic compounds. Technology Transfer Network - Air Toxic Web Site. Hazard summary. Created in April 1992 and revised in December 2012. http://www.epa.gov/ttnatw01/hlthef/arsenic.html. Accessed July 2013

  • U.S. EPA - IRIS (2004) Lead and compounds (inorganic); CASRN 7439-92-1. http://www.epa.gov/iris/subst/0277.htm. Accessed July 2013

Download references

Acknowledgments

The authors would like to thank the Portuguese Foundation for Science and Technology (FCT) for the financial research support of CICECO (Program Pest-PEst-C/CTM/LA0011/2013) and Unidade de Investigação Química Ambiental (UIQA, Projecto Estratégico/528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Manuela Abreu.

Additional information

Responsible editor: Claudio Bini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abreu, M.M., Godinho, B. & Magalhães, M.C.F. Risk assessment of Arbutus unedo L. fruits from plants growing on contaminated soils in the Panasqueira mine area, Portugal. J Soils Sediments 14, 744–757 (2014). https://doi.org/10.1007/s11368-013-0835-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-013-0835-7

Keywords

Navigation