Skip to main content

Advertisement

Log in

Integrating strategic environmental assessment and material flow accounting: a novel approach for moving towards sustainable urban futures

  • NEW PARADIGM IN URBAN DEVELOPMENT: LIFE CYCLE THINKING AND SUSTAINABILITY
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The population living in urban areas of the world continues to grow rapidly. It is, thus, a great priority for the planning practice to embed sustainability concept in their urban development endeavors. Currently, development and expansion of urban systems stress the need to control consumption of resources, especially non-renewable ones. There is also a need to reduce related environmental impacts, while stimulating a sustainable pathway for the population and urban growth.

Methods

Strategic environmental assessment (SEA) is useful for policy design to build an integrated method for supporting the development of a sustainable society. It undertakes territorial assessments and describes urban flows and impacts related to them by using a variety of tools, including material flow accounting (MFA). This study employs MFA, as it fits well within the scope of SEA and supports the growing environmental attention in the urban metabolism approach. Although helpful, MFA has not been systematically applied in the urban development context; for this reason, this paper proposes the integration of SEA and MFA.

Results and discussion

Integration of SEA and MFA generates a new framework for sustainable development planning. The framework is structured in phases oriented to the continual improvement based on the Deming cycle (i.e., plan, do, check, act), a key management approach mainly used in businesses for improving the effectiveness of an organization. It can also be implemented at the urban system level. In order to maintain normative compliance, each process (urban planning, strategic environmental assessment with urban metabolism approach, participatory processes) is standardized in line with a common and mandatory approach. While the processes are integrated among them, highlighting the reciprocal contact points, the results are combined in a holistic perspective. The framework, hence, transforms the voluntary MFA tool into a mandatory process.

Conclusions

The proposed SEA-MFA framework has the potential to unify and standardize the processes of categorizing and quantifying data in order to improve the understanding of urban metabolic principles and scale effects. It also supports management and policy development and meets the requirements of different stakeholders. The framework, thus, generated a novel approach for sustainable urban development planning by providing solutions for specific policy problems and ensuring urban ecological balance and sustainable urban futures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agudelo-Vera CM, Mels AR, Keesman KJ, Rijnaarts HHM (2011) Resource management as a key factor for sustainable urban planning. J Environ Manag 92(10):2295–2303

    Article  Google Scholar 

  • Anderberg S (1998) Industrial metabolism and the linkages between economics, ethics and the environment. Ecol Econ 24(2–3):311–320

    Article  Google Scholar 

  • Arcadis (2015) Sustainable Cities Index 2015. https://www.arcadis.com/media/E/F/B/%7BEFB74BBB-D788-42EF-A761-4807D69B6F70%7D9185R_Arcadis_whitepaper_2015_001.pdf. Accessed 10 Oct 2017

  • Armitage DR, Plummer R, Berkes F, Arthur RI, Charles AT, Davidson-Hunt IJ (2009) Adaptive co-management for social–ecological complexity. Front Ecol Environ 7(2):95–102

    Article  Google Scholar 

  • Ayres RU, Simonis UE (1994) Industrial metabolism: restructuring for sustainable development. United Nations. University Press, Tokyo

    Google Scholar 

  • Baccini P, Brunner PH (2012) Metabolism of the anthroposphere: analysis, evaluation, design. MIT, Cambridge

    Book  Google Scholar 

  • Baccini P, Oswald PF (2008) Designing the urban: linking physiology and morphology. In: Hadorn H (ed) Handbook of transdisciplinary research. Springer, Netherlands

    Google Scholar 

  • Barles S (2009) Urban metabolism of Paris and its region. J Ind Ecol 13(6):898–913

    Article  Google Scholar 

  • Barrutia JM, Aguado I, Echebarria C (2007) Networking for local agenda 21 implementation: learning from experiences with Udaltalde and Udalsarea in the Basque autonomous community. Geoforum 38(1):33–48

    Article  Google Scholar 

  • Behrends S (2012) The urban context of intermodal road-rail transport—threat or opportunity for modal shift? Procedia Soc Behav Sci 39:463–475

    Article  Google Scholar 

  • Bell S (2012) DPSIR = a problem structuring method? An exploration form the ‘Imagine’ approach. Eur J Oper Res 222(2):350–360

    Article  Google Scholar 

  • Berg PG, Nycander G (1997) Sustainable neighbourhoods—a qualitative model for resource management in communities. Landsc Urban Plan 39:117–135

    Article  Google Scholar 

  • Bina O (2007) A critical review of the dominant lines of argumentation on the need for strategic environmental assessment. Environ Impact Assess Rev 27(7):585–606

    Article  Google Scholar 

  • Björklund A (2012) Life cycle assessment as an analytical tool in strategic environmental assessment. Lessons learned from a case study on municipal energy planning in Sweden. Environ Impact Assess Rev 32(1):82–87

    Article  Google Scholar 

  • Börjeson L, Höjer M, Dreborg K-H, Ekvall T, Finnveden G (2006) Scenario types and techniques e towards a user’s guide. Futures 38(7):723–739

    Article  Google Scholar 

  • BRIDGE (2011) http://www.bridge-fp7.eu/. Accessed 24 October 2017

  • Broto VC, Allen A, Eriksson A (2011) Urban Metabolism at UCL. A working paper. London, UK: UCL Environmental Institute. http://www.ucl.ac.uk/environment-institute/research/metabolism. Accessed 27 Oct 2017

  • Broto VC, Allen A, Rapoport E (2012) Interdisciplinary perspectives on urban metabolism. J Ind Ecol 16(6):851–861

    Article  Google Scholar 

  • Brunner PH, Rechberger H (2004) Practical handbook of material flow analysis. Lewis Publishers, Boca Raton

    Google Scholar 

  • Calame P (2009) Le territoire, acteur pivot du XXIe siècle. In: Calame P (ed) Essai sur l’Oeconomie. Editions Charles Léopold Mayer, Paris http://www.i-r-e.org/IMG/pdf/partie_II_chap_5.pdf. Accessed 10 Oct 2017

    Google Scholar 

  • Castellani V, Sala S (2013) Sustainability indicators integrating consumption patterns in strategic environmental assessment for urban planning. Sustainability 5:3426–3446

    Article  Google Scholar 

  • Chaker A, El-Fadl K, Chamas L, Hatjian B (2006) A review of strategic environmental assessment in 12 selected countries. Environ Impact Assess Rev 26(1):15–56

    Article  Google Scholar 

  • Chrysoulakis N, Lopes M, San José R, Grimmond CSB, Jones MB, Magliulo V, Klostermann JE, Synnefa A, Mitraka Z, Castro EA, González A, Vogt R, Vesala T, Spano D, Pigeon G, Freer-Smith P, Staszewski T, Hodges N, Mills G, Cartalis C (2013) Sustainable urban metabolism as a link between bio-physical sciences and urban planning: the BRIDGE project. Landsc Urban Plan 112:100–117

    Article  Google Scholar 

  • Chun-Lin L, Shu-Li H, Shih-Liang C (2009) Synthesis and spatial dynamics of socio-economic metabolism and land use change of Taipei metropolitan region. Ecol Model 220(21):2940–2959

    Article  Google Scholar 

  • Dalal-Clayton DB, Sadler B (2005) Strategic environmental assessment: a sourcebook and reference guide to international experience. International Institute for Environment and Development, OECD and UNEP in association with Earthscan Publications, London

    Google Scholar 

  • De Benedetto L, Klemes J (2009) The environmental performance strategy map: an integrated LCA approach to support the strategic decision-making process. J Clean Prod 17:900–906

    Article  Google Scholar 

  • De Marco O, Lagioia G, Pizzoli Mazzacane E (2001) Materials flow analysis of the Italian economy. J Ind Ecol 4(2):55–70

    Article  Google Scholar 

  • de Ridder W, Turnpenny J, Nilsson M, von Raggamby A (2007) A framework for tool selection and use in integrated assessment for sustainable development. J Environ Assess Policy Manage 9(4):423–441

    Article  Google Scholar 

  • Decker H, Elliott S, Smith FA, Blake DR, Sherwood Rowland F (2000) Energy and material flow through the urban ecosystem. Ann Rev Energy Environ 25:685–740

    Article  Google Scholar 

  • Deming WE (1986) Out of the Crisis. MIT, Cambridge

    Google Scholar 

  • Deutz P, Ioppolo G (2015) From theory to practice: enhancing the potential policy impact of industrial ecology. Sustainability 7(2):2259–2273

    Article  Google Scholar 

  • Dijst M, Worrell E, Böcker L, Brunner P, Davoudi S, Geertman S, Harmsen R, Helbich M, Holtslag AAM, Kwan M, Lenz B, Lyons G, Mokhtarian PL, Newman P, Perrels A, Ribeiro AP, Carreón JR, Thomson G, Urge-Vorsatz D, Zeyringer M (2018) Exploring urban metabolism—towards an interdisciplinary perspective. Resour Conserv Recycl 132:190–203

    Article  Google Scholar 

  • Dizdaroglu D, Yigitcanlar T (2014) A parcel-scale assessment tool to measure sustainability through urban ecosystem components. Ecol Indic 41(1):115–130

    Article  Google Scholar 

  • Dizdaroglu D, Yigitcanlar T, Dawes L (2012) A micro-level indexing model for assessing urban ecosystem sustainability. Smart Sustain Built Environ 1(3):291–315

    Article  Google Scholar 

  • EEA-Eur Environ Agency (2009) Ensuring quality of life in Europe's cities and towns. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • EMI-European Metropolitan network Institute (2016) A Strategic Knowledge and Research Agenda on Polycentrism. http://www.platform31.nl/uploads/media_item/media_item/23/1/KRA_Polycentric_metropolitan_areas-1398346137.pdf. Accessed 6 May 2017

  • ESA-UN (2014) World urbanization prospects: the 2014 revision. http://esaunorg/unpd/wup/. Accessed 05 May 2017

  • EU-European Union (1996) Directive 96/61/EC of the Council of 24 September 1996 concerning integrated pollution prevention and control. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • EU-European Union (2001) Directive 2001/42/EC of the European Parliament and of the Council of 27 June 2001 on the Assessment of the Effects of Certain Plans and Programmes on the Environment. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • European Commission (2012) Consultation Paper: Options for Resource Efficiency Indicator. http://ec.europa.eu/environment/consultations/pdf/consultation_resource.pdf. Accessed 10 Oct 2017

  • EUROSTAT (2001) Economy-wide material flow accounts and derived indicators. A methodological guide. Statistical Office of the European Union, Luxembourg

    Google Scholar 

  • EUROSTAT (2007) Economy-wide material flow accounting. A Compilation Guide, European Statistical Office of the European Union, Luxembourg

    Google Scholar 

  • EUROSTAT (2009) Economy wide material flow accounts: Compilation Guidelines for reporting to the 2009 Eurostat questionnaire. Statistical Office of the European Union, Luxembourg

    Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21

    Article  Google Scholar 

  • Fischer-Kowalski M (1998) Society’s metabolism. The intellectual history of material flow analysis, part I: 1860–1970. J Ind Ecol 2:61–78

    Article  Google Scholar 

  • Fischer-Kowalski M, Haberl H (2007) Socio-ecological transitions and global change: trajectories of social metabolism and land use. Edward Elgar, Cheltenham

    Book  Google Scholar 

  • Fischer-Kowalski M, Hüttler W (1999) Society's metabolism. The intellectual history of materials flow analysis. Part II, 1970-1998. J Ind Ecol 2:107–136

    Article  Google Scholar 

  • Fischer-Kowalski M, Krausmann F, Giljum S, Lutter S, Mayer A, Bringezu S, Moriguchi Y, Schütz H, Schandl H, Weisz H (2011) Methodology and indicators of economy-wide material flow accounting. J Ind Ecol 15:855–876

  • Giampietro M, Mayumi K (2000) Multiple-scale integrated assessment of societal metabolism: introducing the approach. Popul Environ 22:109–153

    Article  Google Scholar 

  • González A, Donnelly A, Jones M, Chrysoulakis N, Lopes M (2013) A decision-support system for sustainable urban metabolism in Europe. Environ Impact Assess Rev 38:109–119

    Article  Google Scholar 

  • Haberl H, Fischer-Kowalski M, Krausmann F, Weisz H, Winiwarter V (2004) Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy 21(3):199–213

    Article  Google Scholar 

  • Haberl H, Wiedenhofer D, Erb K-H, Görg C, Krausmann F (2017) The material stock–flow–service Nexus: a new approach for tackling the decoupling conundrum. Sustainability 9:1049

    Article  CAS  Google Scholar 

  • Hasse JE, Lathrop RG (2003) Land resource impact indicators of urban sprawl. Appl Geogr 23(2–3):159–175

    Article  Google Scholar 

  • Heijungs R, Huppes G, Guinée JB (2010) Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polym Degrad Stab 95(3):422–428

    Article  CAS  Google Scholar 

  • Hendriks CM, Obernosterer R, Müller DB, Kytzia S, Baccini P, Brunner PH (2000) Material flow analysis (MFA): a tool to support environmental policy decision making. Case studies on the city of Vienna and Swiss lowlands. Local Environ 5(3):311–328

    Article  Google Scholar 

  • Hill T, Westbrook R (1997) SWOT analysis: It's time for a product recall. Long Range Plan 30:46–52

    Article  Google Scholar 

  • Hodson M, Marvin S, Robinson B, Swilling M (2012) Reshaping urban infrastructure. J Ind Ecol 16(6):789–800

    Article  Google Scholar 

  • Höjer M, Ahlroth S, Dreborg K-H, Ekvall T, Finnveden G, Hjelm O, Hochschorner E, Nilsson M, Palm V (2008) Scenarios in selected tools for environmental systems analysis. J Clean Prod 16(18):1958–1970

    Article  Google Scholar 

  • Honrado JP, Vieira C, Soares C, Monteiro MB, Marcos B, Pereira HM, Partidário MR (2013) Can we infer about ecosystem services from EIA and SEA practice? A framework for analysis and examples from Portugal. Environ Impact Assess Rev 40:14–24

    Article  Google Scholar 

  • Hu M, Pauliuk S, Wang T, Huppes G, van der Voet E, Müller DB (2010) Iron and steel in Chinese residential buildings: a dynamic analysis. Resour Conserv Recycl 54(9):591–600

    Article  Google Scholar 

  • Huang S, Hsu W (2003) Materials flow analysis and emergy evaluation of Taipei's urban construction. Landsc Urban Plan 63(2):61–74

    Article  Google Scholar 

  • Huang S, Lee C, Chen C (2006) Socioeconomic metabolism in Taiwan: Emergy synthesis versus material flow analysis. Resour Conserv Recycl 48(2):166–196

    Article  Google Scholar 

  • Huang CL, Vause J, Ma HW, Yu CP (2012) Using material/substance flow analysis to support sustainable development assessment: a literature review and outlook. Resour Conserv Recycl 68:104–116

    Article  Google Scholar 

  • Ioppolo G, Saija G, Salomone R (2013) From coastal management to environmental management: the sustainable eco-tourism program for the mid-western coast of Sardinia (Italy). Land Use Policy 31:460–471

    Article  Google Scholar 

  • Ioppolo G, Cucurachi S, Salomone R, Saija G, Ciraolo L (2014a) Industrial ecology and environmental lean management: lights and shadows. Sustainability 6(9):6362–6376

    Article  Google Scholar 

  • Ioppolo G, Heijungs R, Cucurachi S, Salomone R, Kleijn R (2014b) Urban metabolism: many open questions for future answers. In: Salomone R, Saija G (eds) Pathways to environmental sustainability: Methodologies and Experiences. Springer International Publishing AG, Dordrecht, pp 23–32

    Chapter  Google Scholar 

  • Ioppolo G, Cucurachi S, Salomone R, Saija G, Shi L (2016) Sustainable local development and environmental governance: a strategic planning experience. Sustainability 8(2):180

  • ISO (2014) 37120 - Sustainable development of communities -- Indicators for city services and quality of life. https://www.iso.org/standard/62436.html. Accessed 10 Oct 2017

  • ISPRA (2012) Qualitá dell’ambiente urbano VIII rapporto annuale. ISPRA, Rome. http://www.areeurbane.isprambiente.it/it/pubblicazioni/rapporti/viii-rapporto/viii-rapporto-ispra. Accessed 10 Nov 2017

  • ISPRA (2017) Qualitá dell’ambiente urbano VIII rapporto annuale. Roma, Italy: ISPRA. http://www.isprambiente.gov.it/it/pubblicazioni/stato-dellambiente/xiii-rapporto-qualita-dell2019ambienteurbano-edizione-2017. Accessed 01 June 2018

  • ISTAT (2015) Le misure del benessere equo e sostenibile. https://www.istat.it/it/benessere-esostenibilit%C3%A0/misure-del-benessere. Accessed 10 Oct 2017

  • Jago-on KAB, Kaneko S, Fujikura R, Fujiwara A, Imai T, Matsumoto T, Zhang J, Tanikawa H, Tanaka K, Lee B, Taniguchi M (2008) Urbanization and subsurface environmental issues: An attempt at DPSIR model application in Asian cities. Sci Total Environ 407(9):3089–3104

    Article  CAS  Google Scholar 

  • Jeswani HK, Azapagic A, Schepelmann P, Ritthoff M (2010) Options for broadening and deepening the LCA approaches. J Clean Prod 18(2):120–127

    Article  Google Scholar 

  • Jones P, Tauléelo T, Kohlhase J (2002) Growing pacific town and cities: Samoa’s new planning and urban management system. Australian Planner 39(4):186–193

    Article  Google Scholar 

  • Kennedy C, Pincetl S, Bunje P (2011) The study of urban metabolism and its applications to urban planning and design. Environ Pollut 159(8–9):1965–1973

    Article  CAS  Google Scholar 

  • Korhonen J (2007) Environmental planning vs. systems analysis: four prescriptive principles vs. four descriptive indicators. J Environ 82:51–59

    Google Scholar 

  • Kørnøv L, Thissen WAH (2000) Rationality in decision- and policy-making: implications for strategic environmental assessment. Impact Assessment and Project Appraisal 18(3):191–200

    Article  Google Scholar 

  • Kovanda J, Weinzettel J, Hák T (2009) Domestic extraction used (DE) and physical trade in Prague and the Czech Republic: comparison and argumentation for the best DE ratio. In: Havránek M (ed) ConAccount 2008 Urban metabolism: measuring the ecological city Book of proceedings. Charles University Environment Center, Prague

    Google Scholar 

  • Loiseau E, Junqua G, Poux P, Bellon-Maurel V (2012) Environmental assessment of a territory: an overview of existing tools and methods. J Environ Manag 112:213–225

    Article  Google Scholar 

  • Mahbub P, Goonetilleke A, Ayoko GA, Egodawatta P, Yigitcanlar T (2011) Analysis of build-up of heavy metals and volatile organics on urban roads in Gold Coast, Australia. Water Sci Tech 63(9):2077–2085

    Article  CAS  Google Scholar 

  • Mascarenhasa A, Ramosb TB, Nunes L (2012) Developing an integrated approach for the strategic monitoring of regional spatial plans. Land Use Policy 29(3):641–651

    Article  Google Scholar 

  • McCluskey D, João E (2011) The promotion of environmental enhancement in strategic environmental assessment. Environ Impact Assess Rev 31(3):344–351

    Article  Google Scholar 

  • McDonald GW, Patterson MG (2007) Bridging the divide in urban sustainability: from human exemptionalism to the new ecological paradigm. Urban Ecosystems 10(2):169–192

    Article  Google Scholar 

  • McKinsey Global Institute (2009) Preparing for China’s urban billion. Australia: New Media. http://www.mckinsey.com/insights/mgi/research/urbanization/preparing_for_urban_billion_in_china. Accessed 15 July 2017

  • McKinsey Global Institute (2011) Urban world: mapping the economic power of cities. McKinsey and Company, New York

    Google Scholar 

  • METREX (2013) Metropolitan Dimension. http://www.eurometrex.org/Docs/Meetings/glasgow_2013/Metropolitan-Dimension-to-European-affairs-V3.pdf. Accessed 6 May 2017

  • Ministry of the Environment (2005) Strategic Environmental Assessment at the Policy Level: Recent Progress, Current Status and Future Prospects. Typografie Jaroslav Lapač, Praha, Czech Republic. http://ec.europa.eu/ourcoast/download.cfm?fileID=856. Accessed 28 May 2017

  • Müller DB (2006) Stock dynamics for forecasting material flows—case study for housing in the Netherlands. Ecol Econ 59(1):142–156

    Article  Google Scholar 

  • Müller DB, Bader HP, Baccini P (2004) Long-term coordination of timber production and consumption using a dynamic material and energy flow analysis. J Ind Ecol 8(3):65–88

    Article  Google Scholar 

  • Ness B, Anderberg S, Olsson L (2010) Structuring problems in sustainability science: the multi-level DPSIR framework. Geoforum 41(3):479–488

    Article  Google Scholar 

  • Nilsson M, Dalkmann H (2001) Decision-making and strategic environmental assessment. Journal of Environmental Assessment Planning and Management 3(3):305–327

    Article  Google Scholar 

  • Nilsson M, Björklund A, Finnveden G, Johansson J (2005) Testing an SEA methodology for the energy sector—a waste incineration tax proposal. Environ Impact Assess Rev 25(1):1–32

    Article  Google Scholar 

  • Nitz T, Brown A (2001) SEA must learn how policy-making works. Journal of Environmental Assessment Policy and Management 3(3):329–342

    Article  Google Scholar 

  • Noble BF (2002) The Canadian experience with SEA and sustainability. Environ Impact Assess Rev 22(1):3–16

    Article  Google Scholar 

  • Oberling DF, La Rovere EL, de Oliveira Silva HV (2013) SEA making inroads in land-use planning in Brazil: the case of the extreme of South Bahia with forestry and biofuels. Land Use Policy 35:341–358

    Article  Google Scholar 

  • ODPM-Office of the Deputy Prime Minister (2005) A practical guide to the strategic environmental assessment directive. ODPM Publications, London, UK https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/7657/practicalguidesea.pdf. Accessed 28 May 2017

  • Oueslati W, Alvanides S, Garrod G (2015) Determinants of urban sprawl in European cities. USJ 52(9):1594–1614

    Google Scholar 

  • Path-Wostl C (2007) The implications of complexity for integrated resource management. Environ Model Softw 22(5):561–569

    Article  Google Scholar 

  • Pincetl S (2012) Nature, urban development and sustainability—what new elements are needed for a more comprehensive understanding? Cities 29:S32–S37

    Article  Google Scholar 

  • Platje A, Wadman S (1998) From Plan-Do-Check-Action to PIDCAM: the further evolution of the deming-wheel. Int J Proj Manag 16(4):201–208

    Article  Google Scholar 

  • Rappaport R (1971) The flow of energy in an agricultural society. Sci Am 225:117–132

    Article  CAS  Google Scholar 

  • Risse N, Crowleyb M, Vinckea P, Waaub J-P (2003) Implementing the European SEA directive: the member states’ margin of discretion. Environ Impact Assess Rev 23(4):453–470

    Article  Google Scholar 

  • Schulz NB (2007) The direct material inputs into Singapore’s development. J Ind Ecol 11(2):117–131

    Article  Google Scholar 

  • Science for Environment Policy (2015) Indicators for sustainable cities. http://ec.europa.eu/environment/integration/research/newsalert/pdf/indicators_for_sustainable_cities_IR12_en.pdf. Accessed 10 Oct 2017

  • Scipioni A, Mazzi A, Mason M, Manzardo A (2009) The dashboard of sustainability to measure the local urban sustainable development: the case study of Padua municipality. Ecol Indic 9(2):364–380

    Article  Google Scholar 

  • Shi H, Moriguichi Y, Yang J (2003) Industrial ecology in China, part 1: research. J Ind Ecol 6(3–4):7–11

    Google Scholar 

  • Siciliano G (2012) Urbanization strategies, rural development and land use changes in China: a multiple-level integrated assessment. Land Use Policy 29(1):165–178

    Article  Google Scholar 

  • Stoeglehner G, Wegerer G (2006) The SEA-directive and the SEA-protocol adopted to spatial planning—similarities and differences. Environ Impact Assess Rev 26(6):586–599

    Article  Google Scholar 

  • Szopik-Dempczyńska K, Cheba K, Bąk I, Kiba-Janiak I, Saniuk S, Dembińska I, Ioppolo G (2017) The application of relative taxonomy to the study of disproportions in the area of sustainable development of the European Union. Land Use Policy 68:481–491

    Article  Google Scholar 

  • Thompson U-C, Marsan J-F, Fournier-Peyresblanques B, Forgues C, Ogaa A, Jaeger JAG (2013) Using compliance analysis for PPP to bridge the gap between SEA and EIA: lessons from the Turcot interchange reconstruction in Montréal, Québec. Environ Impact Assess Rev 42:74–86

    Article  Google Scholar 

  • Tibbs H (1993) Industrial Ecology. An Environmental Agenda for Industry. Emeryville, USA: Global Business network. http://www.hardintibbs.com/wp-content/uploads/2009/05/tibbs_indecology.pdf. Accessed 10 Oct 2017

  • van Berkel R, Fujita T, Hashimoto S, Geng Y (2009) Industrial and urban symbiosis in Japan: analysis of the eco-town program 1997–2006. J Environ Manag 90(3):1544–1556

    Article  Google Scholar 

  • van der Voet E (2002) Substance flow analysis methodology. In: Ayres RU, Ayres LW (eds) A handbook of industrial ecology. Edward Elgar, Cheltenham and Northampton

    Google Scholar 

  • van der Voet E, van Oers L, Guinée JB, Udo de Haes HA (1999) Using SFA indicators to support environmental policy. Environ Sci Pollut Res Int 6:49–58

    Article  Google Scholar 

  • Who (2016) http://www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/en/. Accessed 6 May 2017

  • Wolman A (1965) The metabolism of cities. Sci Am 213(3):179–190

    Article  CAS  Google Scholar 

  • World Resources Institute (2000) A Guide to World Resources 2000–2001: people and ecosystems: the fraying web of life. Elsevier Science Ltd, Kidlington Oxford

    Google Scholar 

  • Yigitcanlar T, Kamruzzaman M (2014) Investigating the interplay between transport, land use and the environment: a review of the literature. Int J Environ Sci Technol 11(8):2121–2132

    Article  Google Scholar 

  • Yigitcanlar T, Teriman S (2015) Rethinking sustainable urban development. Int J Environ Sci Technol 12(1):341–352

    Article  Google Scholar 

  • Yigitcanlar T, Dur D, Dizdaroglu D (2015) Towards prosperous sustainable cities. Habitat Int 45(1):36–46

    Article  Google Scholar 

  • Zhang Y (2013) Urban metabolism: a review of research methodologies. Environ Pollut 178:463–473

    Article  CAS  Google Scholar 

  • Zhang Y, Yang ZF, Yu XY (2006) Measurement and evaluation of interactions in complex urban ecosystem. Ecol Model 196(1–2):77–89

    Article  Google Scholar 

  • Zhang Y, Liu H, Li Y, Yang Z, Li S, Yang N (2012) Ecological network analysis of China’s societal metabolism. J Environ Manag 93(1):254–263

    Article  Google Scholar 

  • Zhu D, Ru J (2008) Strategic environmental assessment in China: motivations, politics, and effectiveness. J Environ Manag 88(4):615–626

    Article  Google Scholar 

Download references

Acknowledgements

This paper is realized within the Project “Research & Mobility: A novel approach to Urban Metabolism: integration of economic, environmental and social issues for the design of sustainable urban systems”. Giuseppe Ioppolo is the P.I. and all the other coauthors are involved as members of the project. We thank the Editor and Reviewers for their constructive comments that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Ioppolo.

Additional information

Responsible editor: Marzia Traverso

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioppolo, G., Cucurachi, S., Salomone, R. et al. Integrating strategic environmental assessment and material flow accounting: a novel approach for moving towards sustainable urban futures. Int J Life Cycle Assess 24, 1269–1284 (2019). https://doi.org/10.1007/s11367-018-1494-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-018-1494-0

Keywords

Navigation