Skip to main content

Advertisement

Log in

Identification of methodological challenges remaining in the assessment of a water scarcity footprint: a review

  • WATER USE IN LCA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

This work presents a systematic review, updating the information on the currently available methods to calculate the water footprint (WF), and addressing the following methodological challenges, as they have not been deeply studied to date: (1) accounting and assessing the environmental impacts related to changes in evapotranspiration (ET); (2) inventory of actual blue freshwater consumption in agriculture; (3) temporal and spatial variation to establish explicit characterisation factors (CFs) and (4) adequate connection between inventory flows and spatio-temporal explicit CFs.

Methods

A systematic review relying on the guidelines of Pullin and Stewart (Conserv Biol 20(6):1647–1656, 2006) was conducted. Taking into account five specific formulated research questions in the WF field, WF studies were selected based on two ‘types’ of screening criteria: keyword searches and the WF study filter.

Results and discussion

From the 128 papers in peer-reviewed journals on product WF from a life cycle perspective, this literature review shows that major methodological challenges remain partially unsolved, which could degrade the accuracy of product WF assessments. To understand how land use affects ET, and depending on the land cover and size of the land use production system, actual ET can be estimated based on meteorological data on water balance equations embedded in crop and forest growth models, from field measurements at meteorological stations and more recently from remote sensing. For accounting for blue water consumption in agriculture, there are two types of approaches that lead to quite different results: inventory from actual farming records of applied irrigation and inventory from modelled ET associated with irrigation. Depending on the question being addressed, the practitioner can apply either approach. Furthermore, when a single freshwater scarcity CF is determined for large sub-watersheds, especially when the sub-watersheds have non-uniform freshwater availability and demand, uncertainty in the freshwater use-related impacts is introduced. Regarding the connection between inventory flows and spatio-temporal explicit CFs, the difficulty in identifying the exact location of background processes and characterising the local environmental characteristics (e.g. edaphoclimatic conditions, land cover) can hinder the elaboration of an accurate spatially differentiated impact assessment, as more generic CFs can be applied.

Conclusions

This systematic review shows that there are clearly future research needs with respect to the interrelations between freshwater use and potential damages in the areas of protection of resources, human health and ecosystem quality. It is also of paramount importance to understand the effects of land use and land cover change and water irrigation on WF damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcamo J, Doll P, Henrichs T, Kaspar F, Lehner B, Rosch T, Siebert S (2003) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol Sci J 48(3):317–337

    Article  Google Scholar 

  • Aldaya MM, gtHoekstra AY (2010) The water needed for Italians to eat pasta and pizza. Agric Syst 103:351–360

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. In: FAO irrigation and drainage Paper 56. Food and Agriculture Organization of the United Nations. Rome

  • Allen RG, Tasumi M, Morse A, Trezza R, Wright J, Bastiaanssen W, Kramber W, Lorite I, Robinson C (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model. J Irrig Drain E-ASCE 133(4):380–394

    Article  Google Scholar 

  • Antón A, Torrellas M, Núñez M, Sevigné E, Amores MJ, Muñoz P, Montero JI (2014) Improvement of agricultural life cycle assessment studies through spatial differentiation and new impact categories: case study on greenhouse tomato production. Environ Sci Technol 48:9454–9462

    Article  CAS  Google Scholar 

  • Baastiansen WGM, Menenti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J Hydrol 212-123:198–212

    Article  Google Scholar 

  • Bailey RG (1998) Ecoregions: the ecosystem geography of the oceans and continents. Springer, New York

    Book  Google Scholar 

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434

    Article  Google Scholar 

  • Bare JC, Hofstetter P, Pennington DW, Haes de AU (2000) Midpoints versus endpoints: the sacrifices and benefits. Int J Life Cycle Assess 5:319–326

    Article  Google Scholar 

  • Battaglia M, Sands P, White D, Mummery D (2004) CABALA: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support. For Ecol Manag 193:251–282

    Article  Google Scholar 

  • Bayart J-B, Worbe S, Grimaud J, Aoustin E (2014) The water impact index: a simplified single-indicator approach for water footprinting. Int J Life Cycle Assess 19:1336–1344

    Article  Google Scholar 

  • Berger M, Finkbeiner M (2010) Water footprinting: how to address water use in life cycle assessment? Sustainability 2:919–944

    Article  Google Scholar 

  • Berger M, Finkbeiner M (2013) Methodological challenges in volumetric and impact-oriented water footprints. J Ind Ecol 17:79–89

    Article  Google Scholar 

  • Berger M, Warsen J, Krinke S, Bach V, Finkbeiner M (2012) Water footprint of European cars: potential impacts of water consumption along automobile life cycles. Environ Sci Technol 46:4091–4099

    Article  CAS  Google Scholar 

  • Berger M, Van der Ent R, Eisner S, Bach V, Finkbeiner M (2014) Water accounting and vulnerability evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting. Environ Sci Technol 48:4521–4528

    Article  CAS  Google Scholar 

  • Bhattarai N, Quackenbush LJ, Dougherty M, Marzen LJ (2014) A simple Landsat–MODIS fusion approach for monitoring seasonal evapotranspiration at 30 m spatial resolution. Int J Remote Sens 36:115–143

    Article  Google Scholar 

  • Bogardi JJ, Dudgeon D, Lawford R, Flinkerbusch E, Meyn A, Pahl-Wostl C, Vielhauer K, Vörösmarty C (2012) Water security for a planet under pressure: interconnected challenges of a changing world call for sustainable solutions. Curr Opin Environ Sustain 4:35–43

    Article  Google Scholar 

  • Boulay A-M, Bouchard C, Bulle C, Deschênes L, Margni M (2011a) Categorizing water for LCA inventory. Int J Life Cycle Assess 16:639–651

    Article  CAS  Google Scholar 

  • Boulay A-M, Bulle C, Bayart J-B, Deschênes L, Margni M (2011b) Regional characterisation of freshwater use in LCA: modeling direct impacts on human health. Environ Sci Technol 45:8948–8957

    Article  CAS  Google Scholar 

  • Boulay A-M, Hoekstra AY, Vionnet S (2013) Complementarities of water-focused life cycle assessment and water footprint assessment. Environ Sci Technol 47:11926-11927

  • Boulay A-M, Bayart J, Bulle C, Franceschini H, Motoshita M, Pfister S, Margni M (2015a) Analysis of water use impact assessment methods (part B): applicability for water footprinting and decision making with a laundry case study. Int J Life Cycle Assess 20:865–879

    Article  CAS  Google Scholar 

  • Boulay A-M, Motoshita M, Pfister S, Bulle C, Muñoz I, Franceschini H, Margni M (2015b) Analysis of water use impact assessment methods (part A): evaluation of modeling choices based on a quantitative comparison of scarcity and human health indicators. Int J Life Cycle Assess 20:139–160

    Article  Google Scholar 

  • Boulay A-M, Bare J, de Camillis C, Döll P, Gassert F, Gerten D, Humbert S, Inaba A, Itsubo N, Lemoine Y, Margni M, Motoshita M, Núñez M, Pastor AV, Ridoutt B, Schencker U, Shirakawa N, Vionnet S, Worbe S, Yoshikawa S, Pfister S (2015c) Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. Int J Life Cycle Assess 20:577–583

    Article  CAS  Google Scholar 

  • Boulay A-M, Bare J, Benini L, Berger M, Lathuillière MJ, Manzardo A, Margni M, Motoshita M, Núñez M, Pastor AV, Ridoutt B, Oki T, Worbe S, Pfister S (2016) The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int J Life Cycle Assess Submitted

  • Calder IR (2003) Forests and water—closing the gap between public and science perceptions. Water Sci Technol 49:39–53

    Google Scholar 

  • Causapé J, Quílez D, Aragués R (2006) Irrigation efficiency and quality of irrigation return flows in the Ebro river basin: an overview. Environ Monit Assess 117:451–461

    Article  CAS  Google Scholar 

  • Chapagain AK, Hoekstra AY (2007) The water footprint of coffee and tea consumption in the Netherlands. Ecol Econ 64:109–118

    Article  Google Scholar 

  • Chapagain AK, Hoekstra AY (2008) The global component of freshwater demand and supply: an assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water Int 33:19–32

    Article  Google Scholar 

  • Chenoweth J, Hadjikakou M, Zoumides C (2014) Quantifying the human impact on water resources: a critical review of the water footprint concept. Hydrol Earth Syst Sci 18:2325–2342

    Article  Google Scholar 

  • Ciroth A, Winter S, Green Delta Berlin (2014) Open LCA 1.4 overview and first steps. http://openlca-org.seek4domain.net/search.aspx/dddresult/175449089. Accessed June 2016

  • Collins AL, Naden PS, Sear DA, Jones JI, Foster IDL, Morrow K (2011) Sediment targets for informing river catchment management: international experience and prospects. Hydrol Process 25:2112–2129

    Article  Google Scholar 

  • Döll P, Fiedler K, Zhang J (2009) Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol Earth Syst Sci 13:2413–2432

    Article  Google Scholar 

  • Ellison D, Futter MN, Bishop K (2012) On the forest cover-water yield debate: from demand- to supply-side thinking. Glob Chang Biol 18:806–820

    Article  Google Scholar 

  • Euser T, Luxemburg WMJ, Everson CS, Mengistu MG, Clulow AD, Bastiaanssen WGM (2014) A new method to measure Bowen ratios using high-resolution vertical dry and wet bulb temperature profiles. Hydrol Earth Syst Sci 18:2021–2032

    Article  Google Scholar 

  • Falkenmark M, Rockström J (2004) Balancing water for humans and nature: the new approach in ecohydrology. Earthscan Publications, London

    Google Scholar 

  • FAO (2013) CROPWAT 8.0 model. Food Agric. Organ. http://www.fao.org/nr/water/infores_databases_cropwat.html. Accessed March 2015

  • French AN, Hunsaker DJ, Thorp KR (2015) Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sens Environ 158:281–294

    Article  Google Scholar 

  • Frischknecht R, Knöpfel SB (2013) Swiss eco-factors 2013 according to the ecological scarcity method. Methodological fundamentals and their application in Switzerland. Federal Office for the Environment FOEN, Bern

    Google Scholar 

  • Frischknecht R, Steiner R, Jungluth N (2009a) The ecological scarcity method—eco-factors 2006. A method for impact assessment in LCA. Federal Office for the Environment, Bern, Switzerland, In

    Google Scholar 

  • Frischknecht R, Steiner R, Jungluth N (2009b) UBP-Bewertung für den wasser- bedarf von treibstoffen (entwurf). ESU-services, uster, im Auftrag des Bunde- samtes für Umwelt (BAFU), Bern, Switzerland. http://www.esu-services.ch/projects/ubp06/. Accessed January 2013

  • Gassert F, Landis M, Luck M, Reig P, Shiao T (2013) Aqueduct Global Maps 2.0. working paper. Washington, DC: World Resources Institute. Available online at http://www.wri.org/publication/aqueduct-metadata-global. Accessed March 2015

  • Gerten D, Hoff H, Rockström J, Jägermeyr J, Kummu M, Pastor AV (2013) Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements. Curr Opin Environ Sustain 5:551–558

    Article  Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts M, de Schryver A, Struijs J, Van Zelm R (2013) ReCiPe. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Ministerie van Volkshuisvesting. Ruimtelijke Ordening en Milieubeheer, The Netherlands

    Google Scholar 

  • Gordon L, Dunlop M, Foran B (2003) Land cover change and water vapour flows: learning from Australia. Philos Trans Biol Sci 358:1973–1984

    Article  Google Scholar 

  • Gordon L, Steffen W, Jönsson BF, Falkenmark M, Johannessen Å (2005) Human modification of global water vapour flows from the land surface. Proc Natl Acad Sci U S A 102(21):7612–7617

    Article  CAS  Google Scholar 

  • Graaf IEM, Van Beek LPH, Wada Y, Bierkens MFP (2014) Dynamic attribution of global water demand to surface water and groundwater resources: effects of abstractions and return flows on river discharges. Adv Water Resour 64:21–33

    Article  Google Scholar 

  • Hanafiah MM, Xenopoulos MA, Pfister S, Leuven RSEW, Huijbregt MAJ (2011) Characterisation factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ Sci Technol 45:5272–5278

    Article  CAS  Google Scholar 

  • Herath I, Green S, Horne D, Singh R, McLaren S, Clothier B (2013) Water footprinting of agricultural products: evaluation of different protocols using a case study of New Zealand wine. J Clean Prod 44:159–167

    Article  Google Scholar 

  • Hoekstra AY (2014) Sustainable, efficient, and equitable water use: the three pillars under wise freshwater allocation. WIREs Water 1:31–40

    Article  Google Scholar 

  • Hoekstra AY (2015) The sustainability of a single activity, production process or product. Ecol Indic 57:82–84

    Article  Google Scholar 

  • Hoekstra AY (2016) A critique on the water-scarcity weighted water footprint in LCA. Ecol Indic 66:564–573

    Article  Google Scholar 

  • Hoekstra AY, Wiedmann TO (2014) Humanity’s unsustainable environmental footprint. Science 344(6188):1114–1116

    Article  CAS  Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual: setting the global standard. Water Footprint Network, Enschede

    Google Scholar 

  • Hoekstra AY, Mekonnen MM, Chapagain AK, Mathews RE, Richter BD (2012) Global monthly water scarcity: blue water footprints versus blue water availability. PLoS One 7(2):e32688

    Article  CAS  Google Scholar 

  • Huijbregts M (2013) A critical view on scientific consensus building in life cycle impact assessment. Int J Life Cycle Assess 19:477–479

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • ISO (2014) Environmental management. ISO 14046. Water footprint—principles, requirements and guidelines. International Organization for Standardization, Geneva

    Google Scholar 

  • Jefferies D, Muñoz I, Hodges J, King VJ, Aldaya M, Ercin AE, Milà i Canals L, Hoekstra AY (2012) Water footprint and life cycle assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. J Clean Prod 33:155–166

    Article  Google Scholar 

  • Jensen ME (2007) Beyong irrigation efficiency. Irrig Sci 25:233–245

    Article  Google Scholar 

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. American Society of Civil Engineers. New York, New York 332 pp

    Google Scholar 

  • Jeswani HK, Azapagic A (2011) Water footprint: methodologies and a case study for assessing the impacts of water use. J Clean Prod 19:288–1299

    Article  Google Scholar 

  • Jiménez CBE, Oki T, Arnell NW, Benito G, Cogley JG, Döll P, Jiang T, Mwakalila SS (2014) Freshwater resources. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, Mac Cracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, pp 229–269

    Google Scholar 

  • Jolliet O, Muller-Wenk R, Bare J, Brent A, Goedkoop M, Heijungs R, Itsubo N, Pena C, Pennington D, Potting J, Rebitzer G, Stewart M, Haes de AU, Weidema B (2004) The LCIA midpoint-damage framework of the UNEP/SETAC LIfe Cycle Initiative. Int J Life Cycle Asses 9:394–404

    Article  Google Scholar 

  • JRC-IES (2010) ILCD handbook. International reference life cycle data system. Generel guide for life cycle assessment—detailed guidance. http://eplca.jrc.ec.europa.eu/?page_id=86. Accessed March 2015

  • Kendy E, Bredehoeft JD (2006) Transient effects of groundwater pumping and surface-water irrigation returns on streamflow. Water Resour Res 42:W08415. doi:10.1029/2005WR004792

    Article  Google Scholar 

  • Keys PW, Van der Ent RJ, Gordon LJ, Hoff H, Nikoli R, Savenije HHG (2012) Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences 9:733–746

    Article  Google Scholar 

  • Knox JW, Kay MG, Weatherhead EK (2012) Water regulation, crop production, and agricultural water management—understanding farmer perspectives on irrigation efficiency. Agr Water Manage 108:3–8

    Article  Google Scholar 

  • Komatsu H, Cho J, Matsumoto K, Otsuki K (2012) Simple modeling of the global variation in annual forest evapotranspiration. J Hydrol 420-421:380–390

    Article  Google Scholar 

  • Kounina A, Margni M, Bayart J, Boulay A-M, Berger M, Bulle C, Frischknecht R, Koehler A, Milà i Canals L, Motoshita M, Núñez M, Peters G, Pfister S, Ridoutt B, Van Zelm R, Verones F, Humbert S (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18:707–721

    Article  CAS  Google Scholar 

  • Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag 95:209–228

    Article  Google Scholar 

  • Lathuillière MJ, Bulle C, Johnson MS (2016) Land use in LCA: including regionally altered precipitation to quantify ecosystem damage. Environ Sci Tecnol 50(21):11769–11778

    Article  CAS  Google Scholar 

  • Launiainen S, Futter MN, Ellison D, Clarke N, Finér L, Högbom L, Laurén A, Ring E (2014) Is the water footprint an appropriate tool for forestry and forest products: the Fennoscandian case. Ambio 43:244–256

    Article  Google Scholar 

  • Lehner B, Döll P, Alcamo J, Henrichs T, Kaspar F (2006) Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Clim Chang 75:273–299

    Article  Google Scholar 

  • Loubet P, Roux P, Núñez M, Bellon-Maurel V (2013) Assessing water deprivation at the sub-watershed scale in LCA including downstream cascade effects. Environ Sci Technol 47:14242–14249

    Article  CAS  Google Scholar 

  • Lovarelli D, Bacenetti J, Fiala M (2016) Water footprint of crop productions: a review. Sci Total Environ 548-549:236–251

    Article  CAS  Google Scholar 

  • Maes WH, Heuvelmans G, Muys B (2009) Assessment of land use impact on water-related ecosystem services capturing the integrated terrestrial-aquatic system. Environ Sci Technol 43:7324–7330

    Article  CAS  Google Scholar 

  • Maréchal JC, Galeazzi L, Dewandel B (2003) Importance of irrigation return flow on the groundwater budget of a rural basin in India. Hydrology of the Mediterranean and semiarid regions (Proceedings of an international symposium held at Montpellier. April 2003. IAHS Publ no. 278.2003

  • McMahon TA, Peel MC, Lowe L, Srikanthan R, McVicar TR (2013) Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrol Earth Syst Sci 17:1331–1363

    Article  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2010) A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol. Earth Syst Sci 14:1259–1276

    Article  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2011a) The green, blue and grey water footprint of crops and derived crop products. Hydrol Earth Syst Sci 15:1577–1600

    Article  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2011b) National water footprint accounts: the green, blue and grey water footprint of production and consumption. Value of water research report series no. 50–vol. 1. UNESCO-IHE, Delft

    Google Scholar 

  • Mekonnen MM, Hoekstra AY (2011c) National water footprint accounts: the green, blue and grey water footprint of production and consumption. Value of water research report series no. 50–vol. 2 appendices. UNESCO-IHE, Delft

    Google Scholar 

  • Mekonnen MM, Hoekstra AY (2012) A global assessment of the water footprint of farm animal products. Ecosystems 15:401–415

    Article  CAS  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2014) Water footprint benchmarks for crop production: a first global assessment. Ecol Indic 46:214–223

    Article  Google Scholar 

  • Milà i Canals L, Chenoweth J, Chapagain A, Orr S, Antón A, Clift R (2009) Assessing freshwater use impacts in LCA. Part I—inventory modelling and characterisation factors for the main impact pathways. Int J Life Cycle Assess 14:28–42

    Article  Google Scholar 

  • Milà i Canals L, Chapagain A, Orr S, Chenoweth J, Anton A, Clift R (2010) Assessing freshwater use impacts in LCA, part 2: case study of broccoli production in the UK and Spain. Int J Life Cycle Assess 15(6):598–607

    Article  CAS  Google Scholar 

  • Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:347–350

    Article  CAS  Google Scholar 

  • Miralles DG, De Jeu RAM, Gash JH, Holmes TRH, Dolman AJ (2011) Magnitude and variability of land evaporation and its components at the global scale. Hydrol Earth Ssyst Sci 15:967–981

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and environment, in: The state and movement of water in living organisms. Cambridge University Press, Swansea, pp 205–234. XIXth Symposium of the Society for Experimental Biology

  • Motoshita M, Itsubo N, Inaba A (2010) Development of impact factors on damage to health by infectious diseases caused by domestic water scarcity. Int J Life Cycle Assess 16:65–73

    Article  CAS  Google Scholar 

  • Motoshita M, Ono Y, Pfister S, Boulay A-M, Berger M, Nansai K, Tahara K, Itsubo N, Inaba A (2014) Consistent characterisation factors at midpoint and endpoint relevant to agricultural water scarcity arising from freshwater consumption. Int J Life Cycle Assess. doi:10.1007/s11367-014-0811-5

    Google Scholar 

  • Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111:519–536

    Article  Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remot Sens Environ 115:1781–1800

    Article  Google Scholar 

  • Mutel C (2016) Brightway2. Advanced life cycle assessment framework. https://brightwaylca.org/. Accessed June 2016

  • Núñez M, Pfister S, Antón A, Muñoz P, Hellweg S, Koehler A, Rieradevall J (2012) Assessing the environmental impact of water consumption by energy crops grown in Spain. J Ind Ecol 17:90–102

    Article  Google Scholar 

  • Núñez M, Pfister S, Roux P, Antón A (2013) Estimating water consumption of potential natural vegetation on global dry lands: building an LCA framework for ET. Environ Sci Technol 47:12258–12265

    Article  CAS  Google Scholar 

  • Núñez M, Pfister S, Vargas M, Antón A (2015) Spatial and temporal specific characterisation factors for water use impact assessment in Spain. Int J Life Cycle Asses 20:128–138

    Article  CAS  Google Scholar 

  • Núnez M, Bouchard CR, Bulle C, Boulay A-M, Margni M (2016) Critical analysis of life cycle impact assessment methods addressing consequences of freshwater use on ecosystems and recommendations for future method development. Int J Life Cycle Assess 21:1799–1815

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938

    Article  Google Scholar 

  • Page G, Ridoutt B, Bellotti B (2011) Fresh tomato production for the Sydney market: an evaluation of options to reduce freshwater scarcity from agricultural water use. Agric Water Manag 100:18–24

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc Royal Soc London 193:120–145

    Article  CAS  Google Scholar 

  • Peters NE, Meybeck M (2000) Water quality degradation effects on freshwater availability: impacts of human activities. Water Int 25:185–193

    Article  Google Scholar 

  • Peters GM, Wiedemann SG, Rowley HV, Tucker RW (2010) Accounting for water use in Australian red meat production. Int J Life Cycle Assess 15:311–320

    Article  CAS  Google Scholar 

  • Pfister S (2014) Water use. In: Hauschild MZ, Huijbregts MAJ (eds) Life cycle impact assessment, LCA compendium—the complete world of life cycle assessment. Springer, pp 223–245. doi:10.1007/978-94-017-9744-3

  • Pfister S, Bayer P (2014) Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. J Clean Prod 73:52–62

    Article  Google Scholar 

  • Pfister S, Ridoutt B (2014) Water footprint: pitfalls on common ground. Environ Sci Technol 48:4–4

    Article  CAS  Google Scholar 

  • Pfister S, Suh S (2015) Environmental impacts of thermal emission to freshwater: spatially explicit fate and effect modelling for life cycle assessment and water footprinting. Int J Life Cycle Assess 20:927–936

    Article  Google Scholar 

  • Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104

    Article  CAS  Google Scholar 

  • Pfister S, Bayer P, Koehler A, Hellweg S (2011a) Projected water consumption in future global agriculture: scenarios and related impacts. Sci Total Environ 409:4206–4216

    Article  CAS  Google Scholar 

  • Pfister S, Bayer P, Koehler A, Hellweg S (2011b) Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ Sci Technol 45:5761–5768

    Article  CAS  Google Scholar 

  • Pfister S, Boulay A-M, Berger M, Hadjikakou M, Motoshita M, Hess T, Ridoutt B, Weinzettel J, Scherer L, Döll P, Manzardo A, Núñez M, Verones F, Humbert S, Harding K, Benini L, Oki T, Finkbeiner M (2017) Understanding the LCA and ISO water foootprint: a response to Hoekstra (2016) “A critique on the water-scarcity weighted water footprint in LCA”. Ecol Indic 72:352–359

    Article  Google Scholar 

  • Pielke RA, Beltrán-Przekurat A, Hiemstra CA, Lin J, Nobis TE, Adegoke J, Nair US, Niyogi D (2006) Impacts of regional land use and land cover on rainfall: an overview. In: proceedings of the Fifth FRIEND World Conference ‘Climate variability and change e hydrological impacts’, November 2006. IAHS Publications, Havana, Cuba

    Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of the surface heat flux and evapotranspiration using large-scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Pullin S, Stewart GB (2006) Guidelines for systematic review in conservation and environmental management. Conserv Biol 20(6):1647–1656

    Article  Google Scholar 

  • Quinteiro P, Dias AC, Pina L, Neto B, Ridoutt BG, Arroja L (2014) Addressing the freshwater use of a Portuguese wine (“vinho verde”) using different LCA methods. J Clean Prod 68:46–55

    Article  Google Scholar 

  • Quinteiro P, Dias AC, Silva M, Ridoutt BG, Arroja L (2015) A contribution to the environmental impact assessment of green water flows. J Clean Prod 93:318–329

    Article  Google Scholar 

  • Qureshi ME, Grafton RQ, Kirby M, Hanjra MA (2011) Understanding irrigation water use efficiency at different scales for better policy reform: a case study of the Murray–Darling Basin, Australia. Water Policy 13:1–17

    Article  Google Scholar 

  • Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Part 2: impact assessment and interpretation. Int J Life Cycle Assess 13:374–388

    Article  Google Scholar 

  • Rep J (2011) From forest to paper, the story of our water footprint. UPM Nordland papier mill, UPM-Kymmene

    Google Scholar 

  • Ridoutt BG (2011) Development and application of a water footprint metric for agricultural products and food industry. In: Finkbeiner M (ed) Towards life cycle sustainability management. Springer, New York, pp 183–192

    Chapter  Google Scholar 

  • Ridoutt BG, Pfister S (2010a) Reducing humanity’s water footprint. Environ Sci Technol 44:6019–6021

    Article  CAS  Google Scholar 

  • Ridoutt BG, Pfister S (2010b) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Chang 20:113–120

    Article  Google Scholar 

  • Ridoutt BG, Pfister S (2013) A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. Int J Life Cycle Assess 18:204–207

    Article  CAS  Google Scholar 

  • Ridoutt BG, Juliano P, Sanguansri P, Sellahewa J (2010) The water footprint of food waste: case study of fresh mango in Australia. J Clean Prod 18:1714–1721

    Article  CAS  Google Scholar 

  • Rockström J, Gordon L (2001) Assessment of ET to sustain major biomes of the world: implications for future ecohydrological landscape management. Phys Chem Earth 26:843–851

    Article  Google Scholar 

  • Rockström J, Falkenmark M, Karlberg L, Hoff H, Rost S, Gerten D (2009) Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour Res 45:1–16

    Article  Google Scholar 

  • Rodriguez CI, de Galarreta VA, Kruse EE (2015) Analysis of water footprint of potato production in the pampean region of Argentina. J Clean Prod 90:91–96

    Article  Google Scholar 

  • Romaguera M, Hoekstra AY, Su Z, Krol MS, Salama MS (2010) Potential of using remote sensing techniques for global assessment of water footprint of crops. Remote Sens 2:1177–1196

    Article  Google Scholar 

  • Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S (2008) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44(9). doi:10.1029/2007WR006331

  • Sala S, Benini V, Castellani Bm Vidal-Legaz, Pant R (2016) Environmental footprint—update of Life Cycle Impact Assessment methods; draft for TAB. http://ec.europa.eu/environment/eussd/smgp/ef_news.htm. Accessed September 2016

  • Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 43:1–18

    Google Scholar 

  • Schmied HM, Eisner S, Franz D, Wattenbach M, Portmann FT, Flörke M, Döll P (2014) Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol Earth Syst Sci 18(9):3511–3538

    Article  Google Scholar 

  • Schrader F, Durner W, Fank J, Gebler S, Pütz T, Hannes M, Wollschläger U (2013) Estimating precipitation and actual evapotrasnpiration from precision lysimeter measurements. Procedia Environ Sci 19:543–552

    Article  Google Scholar 

  • Schyns JF, Hoekstra AY, Booij MJ (2015) Review and classification of indicators of green water availability and scarcity. Hydrol Earth Syst Sci 19:4581–4608

    Article  Google Scholar 

  • Scott CA, Vicuna S, Blanco-Gutiérrez I, Meza F, Varela-Ortega C (2014) Irrigation efficiency and water-policy implications for river basin resilience. Hydrol Earth Syst Sci 18:1339–1348

    Article  Google Scholar 

  • Sellers P, Hall F, Ranson KJ, Margolis H, Kelly B, Baldocchi D, den Hartog G, Cihlar J, Ryan MG, Goodison B, Crill P, Lettenmaier D, De W (1995) The Boreal Ecosystem–Atmosphere Study (BOREAS): an overview and early results from the 1994 field year. Bull Am Meteorol Soc 76(9):1549–1577

    Article  Google Scholar 

  • Shen Y, Oki T, Utsumi N, Kanae S, Hanasaki N (2008) Projection of future world water resources under SRER scenarios: water withdrawal. Hydrol Sci J 53:11–33

    Article  Google Scholar 

  • Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation—a global inventory. Hydrol Earth Syst Sci 14:1863–1880

    Article  Google Scholar 

  • Sinclair Knight Merz (2005) Water and land use change study. Land use and hydrologic change in south-west Victoria. Report to Glenelg hopkins catchment management authority and water and land use change steering committee. Sinclair Knight Merz Project VW002032

  • Steffen W, Richardson K, Rockström J, Cornell S, Fetzer I, Bennett E, Biggs R, Carpenter SR, de Wit CA, Folke C, Mace G, Persson LML, Veerabhadran R, Reyers B, Sorlin S (2015) Planetary boundaries: guiding human development on a changing planet. Sciencezpress, pp:1–17

  • The CEO Water Mandate (2015) Understanding key water stewardship terms, detailed definition. The CEO Water Mandate. Available online at http://ceowatermandate.org. Accessed January 2016

  • Thornthwaite CW (1948) An approach toward a rational classification of Climate. Geog Review 38:55–94

    Article  Google Scholar 

  • Trenberth KE (1999) Atmospheric moisture recycling: role of advection and local evaporation. J Clim 12:1368–1381

    Article  Google Scholar 

  • UNEP (1997) Source book of alternative technologies for freshwater augmentation in Latin America and the Caribbean. International Environmental Technology Centre United Nations Environment Programme, Washington D.C. Available on http://www.oas.org/usde/publications/Unit/oea59e/begin.htm#Contents. Accessed September 2015

  • UNEP Setac Life Cycle Initiative (2016) Global guidance for life cycle impact assessment indicators volume 1. United Nations Environment Programme

  • Van Beek LP, Wada Y, Bierkens MFP (2011) Global monthly water stress: 1. Water balance and water availability. Water Resour Res 47:W07517

    Article  Google Scholar 

  • Van der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric moisture over continents. Water Resour Res 46:1–12

    Article  Google Scholar 

  • Van Dijk AIJM, Keenan RJ (2007) Planted forests and water in perspective. For Ecol Manag 251:1–9

    Article  Google Scholar 

  • Van Zelm R, Schipper AM, Rombouts M, Snepvangers J, Huijbregts MAJ (2011) Implementing groundwater extraction in life cycle impact assessment: characterisation factors based on plant species richness for The Netherlands. Environ Sci Technol 45:629–635

    Article  CAS  Google Scholar 

  • Verones F, Hanafiak MM, Pfister S, Huijbregts MAJ, Pelletier GJ, Koehler A (2010) Characterisation factors for thermal pollution in freshwater aquatic environments. Environ Sci Technol 44:9364–9369

    Article  CAS  Google Scholar 

  • Verones F, Pfister S, Hellweg S (2013a) Quantifying area changes of internationally important wetlands due to water consumption in LCA. Environ Sci Technol 47:9799–9807

    Article  CAS  Google Scholar 

  • Verones F, Saner D, Pfister S, Baisero D, Rondinini HS (2013b) Effects of consumptive water use on biodiversity in wetlands of international importance. Environ Sci Technol 47:12248–12257

    Article  CAS  Google Scholar 

  • Verones F, Pfister S, van Zelm R, Hellweg S (2016) Biodiversity impacts from water consumption on a global scale for use in life cycle assessment. Int J Life Cycle Assess. doi:10.1007/s11367-016-1236-0

    Google Scholar 

  • Verstraeten WW, Veroustraete F, Feyen J (2008) Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 8:70–117

    Article  Google Scholar 

  • Vinukollu RK, Wood EF, Ferguson CR, Fisher JB (2011) Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: evaluation of three process-based approaches, Remote Sens. Environment 115:801–823

    Google Scholar 

  • Wallace JS (2000) Increasing agricultural water use efficiency to meet future food production. Agric Ecosyst Environ 82:105–119

    Article  Google Scholar 

  • Wichelns D (2010) Virtual water and water footprints offer limited insight regarding important policy questions. Int J Water Resour Dev 26:639–651

    Article  Google Scholar 

  • Wild (2003) Soil, land and food: managing the land during the twenty first century. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • WULCA (2014) The WULCA working group works as an international working group focusing on water use assessment and water footprinting taking the life cycle perspective. http://www.wulca-waterlca.org/Accessed April 2015

  • WULCA (2015) Consensual method development to assess water use in LCA. The AWaRe method: available water remaning. http://wulca-waterlca.org/project.html. Accessed July 2015

  • Xu C-Y, Gong L, Jiang T, Chen S, Singh VP (2006) Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J Hydrol 327:81-93

  • Yano S, Hanasaki N, Itsubo N, Oki T (2015) Water scarcity footprints by considering the differences in water sources. Sustainability 7:9753–9772

    Article  Google Scholar 

  • Yoo S-H, Choi J-Y, Lee S-H, Kim T (2013) Estimating water footprint of paddy rice in Korea. Paddy Water Environ 12:43–54

    Article  Google Scholar 

  • Zhang L, Dawes WR, Walker GR (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour Res 37:701–708

    Article  Google Scholar 

Download references

Acknowledgments

This study has been supported by the project SustainFor (PTDC/AGR-FOR/1510/2014) funded under the project 3599-PPCDT by FCT (Science and Technology Foundation-Portugal) and by FEDER (European Regional Development Fund). Thanks are also due to FCT and POHP/FSE funding program for the scholarship granted to Paula Quinteiro (SFRH/BD/78690/2011), and to FCT for the financial support to CESAM (UID/AMB/50017), through national funds, and the co-funding by FEDER, within the PT2020 Partnership Agreement and Compete 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Quinteiro.

Additional information

Responsible editor: Stephan Pfister

Electronic supplementary material

ESM 1

(DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinteiro, P., Ridoutt, B.G., Arroja, L. et al. Identification of methodological challenges remaining in the assessment of a water scarcity footprint: a review. Int J Life Cycle Assess 23, 164–180 (2018). https://doi.org/10.1007/s11367-017-1304-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-017-1304-0

Keywords

Navigation