Skip to main content

Advertisement

Log in

Choice of land reference situation in life cycle impact assessment

  • LAND USE IN LCA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Land use life cycle impact assessment is calculated as a distance to target value—the target being a desirable situation defined as a reference situation in Milà i Canals et al.’s (Int J Life Cycle Assess 12(1):2–4, 2007) widely accepted framework. There are several reference situations. This work aims to demonstrate the effect of the choice of reference situation on land impact indicators.

Methods

Various reference situations are reported from the perspective of the object of assessment in land in life cycle assessment (LCA) studies and the modeling choices used in life cycle land impact indicators. They are analyzed and classified according to additional LCA modeling requirements: the type of LCA approach (attributional or consequential), cultural perspectives (egalitarian, hierarchist or individualist), and temporal preference. Sets of characterization factors (CF) by impact pathway, land cover, and region are calculated for different reference situations. These sets of CFs by reference situation are all compared with a baseline set. A case study on different crop types is used to calculate impact scores from different sets of CFs and compare them.

Results and discussion

Comparing the rankings of the CFs from two different sets present inversions from 5% to 35% worldwide. Impact scores of the case study present inversions of 10% worldwide. These inversions demonstrate that the choice of a reference situation may reverse the LCA conclusions for the land use impact category. Moreover, these reference situations must be consistent with the different modeling requirements of an LCA study (approach, cultural perspective, and time preference), as defined in the goal and scope.

Conclusions

A decision tree is proposed to guide the selection of a consistent and suitable choice of reference situation when setting other LCA modeling requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 1(42):12–16

    Article  Google Scholar 

  • Brander M (2015) Response to “attributional life cycle assessment: is a land-use baseline necessary?”—appreciation, renouncement, and further discussion. Int J Life Cycle Assess 20(12):1607–1611

    Article  Google Scholar 

  • Brander M (2016) Conceptualising attributional LCA is necessary for resolving methodological issues such as the appropriate form of land use baseline. Int J Life Cycle Assess 21(12):1816–1821

    Article  Google Scholar 

  • Brentrup F, Küsters J, Lammel J, Kuhlmann H (2002) Life cycle impact assessment of land use based on the hemeroby concept. Int J Life Cycle Assess 7(6):339–348

    Google Scholar 

  • BSI (2011) PAS 2050:2011—specification for the assessment of the life cycle greenhouse gas emissions of goods and services. http://shop.bsigroup.com/en/forms/PASs/PAS-2050/. Accessed 14 November 2015

  • Chiarucci A, Araújo MB, Decocq G, Beierkuhnlein C, Fernández-Palacios JM (2010) The concept of potential natural vegetation: an epitaph? J Veg Sci 21(6):1172–1178

    Article  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Stich S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Chang Biol 7(4):357–373

    Article  Google Scholar 

  • Curran MA (2012) Life cycle assessment student handbook. Wiley, Salem, USA

  • de Baan L, Mutel CL, Curran M, Hellweg S, Koellner T (2013) Land use in life cycle assessment: global characterization factors based on regional and global potential species extinction. Environ Sci Technol 47(16):9281–9290

    Article  Google Scholar 

  • de Souza DM, Teixeira RFM, Ostermann OP (2015) Assessing biodiversity loss due to land use with life cycle assessment: are we there yet? Glob Chang Biol 21(1):32–47

    Article  Google Scholar 

  • Döll P, Fiedler K (2008) Global-scale modeling of groundwater recharge. Hydrol Earth Syst Sc 12(3):863–885

    Article  Google Scholar 

  • European Environment Agency (EEA) & European Commission (2006) A strategy to keep Europe’s soils robust and healthy. http://ec.europa.eu/environment/soil/index.html. Accessed 14 November 2015

  • European Environment Agency (EEA) (1998) Europe’s environment: the second assessment. Office for official Publications of the European Communities ed., Luxembourg

  • European Commission & Joint Research Center (2010) International Reference Life Cycle Data System (ILCD) Handbook—general guide for life cycle assessment—detailed guidance. First edition. http://eplca.jrc.ec.europa.eu/?/page_id=86. Accessed 15 November 2015

  • Food and Agriculture Organization (FAOSTAT). (2015) FAOSTAT. http://faostat3.fao.org/home/E. Accessed 15 September 2015

  • Food and Agriculture Organization (FAO) & Intergovernmental Technical Panel on Soils (ITPS) (2015) Status of the world's soil resources. http://www.fao.org/3/a-i5199e.pdf. Accessed 16 January 2016

  • Harrison SP, Prentice IC (2003) Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Glob Chang Biol 9:983–1004

    Article  Google Scholar 

  • Hauschild M, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, De Schryver A, Humbert S, Laurent A, Sala S, Pant R (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18(3):683–697

    Article  CAS  Google Scholar 

  • Haxeltine A, Prentice IC (1996) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem Cy 10(4):693–709

    Article  CAS  Google Scholar 

  • Hofstetter P (1998) Perspectives in life cycle impact assessment; a structured approach to combine models of the technosphere, ecosphere, and valuesphere. Kluwer Academic Publishers, Boston

  • Hofstetter P, Baumgartner T, Scholz R (2000) Modelling the valuesphere and the ecosphere: integrating the decision makers’ perspectives into LCA. Int J Life Cycle Assess 5(3):161–175

    Article  Google Scholar 

  • Holdridge LR (1947) Determination of world plant formations from simple climatic data. Science 105(2727):367–368

    Article  CAS  Google Scholar 

  • International Organization for Standardization (ISO) (2006) 14040—environnemental management—life cycle assessment—requirements and guidelines

  • Kahar P, Agus J, Kikkawa Y, Taguchi K, Doi Y, Tsuge T (2005) Effective production and kinetic characterization of ultra-high-molecular-weight poly [(R)-3-hydroxybutyrate] in recombinant Escherichia coli. Polym Degrad Stabil 87(1):161–169

    Article  CAS  Google Scholar 

  • Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV (2003) Climate change and arctic ecosystems II: modeling, paleodata-model comparisons, and future projections. J Geophys Res 108(19):8171–8188

    Article  Google Scholar 

  • Kim J, Yang Y, Bae J, Suh S (2013) The importance of normalization references in interpreting life cycle assessment results. J Ind Ecol 17(3):385–395

    Article  Google Scholar 

  • Klöpffer W, Grahl B (2014) Life cycle assessment (LCA): a guide to best practice. Wiley, Berlin

  • Koellner T, Geyer R (2013) Global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18(6):1185–1187

    Article  Google Scholar 

  • Levavasseur G, Vrac M, Roche DM, Paillard D (2013) Statistical modelling of a new global potential vegetation distribution. Environ Res Lett 7(4):044019

    Article  Google Scholar 

  • Loidi J, Fernández-González F (2012) Potential natural vegetation: reburying or reboring? Journal Veg Sci 23(3):596–604

    Article  Google Scholar 

  • Mattila T, Helin T, Antikainen R, Soimakallio S, Pingoud K, Wessman H (2011) Land use in life cycle assessment. http://hdl.handle.net/10138/37049. Accessed 12 April 2014

  • Michelsen O, Lindner J (2015) Why include impacts on biodiversity from land use in LCIA and how to select useful indicators? Sustainability 7(5):6278–6302

    Article  Google Scholar 

  • Milà i Canals L, Muller-Wenk R, Bauer C, Depestele J, Dubreuil A, Knuchel RF, Gaillard G, Michelsen O, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):2–4

    Article  Google Scholar 

  • Milà i Canals L, Rigarlsford G, Sim S (2013) Land use impact assessment of margarine. Int J Life Cycle Assess 18(6):1265–1277

    Article  Google Scholar 

  • Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SLL, Hoskins AJ, Lysenko I, Phillips HRP, Burton VJ, Chng CWT, Emerson S, Gao D, Pask-Hale G, Hutton J, Jung M, Sanchez-Ortiz K, Simmons BI, Whitmee S, Zhang H, Scharlemann JPW, Purvis A (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353(6296):288–291

    Article  CAS  Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (2001) Environmental indicators for agriculture. Methods and results, vol 3. In: OECD (ed) Agriculture and food. ISBN 92–4-18614-X, pp 409

  • Othoniel B, Rugani B, Heijungs R, Benetto E, Withagen C (2016) Assessment of life cycle impacts on ecosystem services: promise, problems, and prospects. Environ Sci Technol 50(3):1077–1092

    Article  CAS  Google Scholar 

  • Portmann FT, Siebert S, Döll P (2010) Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling - MIRCA2000. Global Biogeochem Cy 24(GB1011). doi:10.1029/2008GB003435

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cy 13(4):997–1027. doi:10.1029/1999GB900046

    Article  CAS  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corekk RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461(7263):472–475

    Article  Google Scholar 

  • Saad R, Koellner T, Margni M (2013) Land use impacts on freshwater regulation, erosion regulation, and water purification: a spatial approach for a global scale level. Int J Life Cycle Assess 18(6):1253–1264

    Article  Google Scholar 

  • Schmidinger K, Stehfest E (2012) Including CO2 implications of land occupation in LCAs—method and example for livestock products. Int J Life Cycle Assess 17(8):962–972

    Article  CAS  Google Scholar 

  • Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics. http://www.plastice.org/fileadmin/files/PROBIP2009_Final_June_2009.pdf. Accessed 22 March 2014

  • Soimakallio S, Cowie A, Brandão M, Finnveden G, Ekvall T, Erlandsson M, Koponen K, Karlsson P-E (2015) Attributional life cycle assessment: is a land-use baseline necessary? Int J Life Cycle Assess 20(10):1364–1375

    Article  Google Scholar 

  • Soimakallio S, Brandão M, Ekvall T, Cowie A, Finnveden G, ErlandssonM KK, Karlsson P-E (2016) On the validity of natural regeneration in determination of land-use baseline. Int J Life Cycle Assess 21(4):448–450

    Article  Google Scholar 

  • Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson L, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347(6223). doi:10.1126/science.1259855

  • Tillman A-M (2000) Significance of decision-making for LCA methodology. Environ Impact Assess 20(1):113–123

    Article  Google Scholar 

  • United States Department of Agriculture (USDA) (2012). Water erosion prediction project (WEPP) (version 2012.8). http://www.ars.usda.gov/News/docs.htm?docid=10621. Accessed 15 May 2014

  • WRI and WBCSD (2011) Product life cycle reporting and standard. http://www.wri.org/sites/default/files/pdf/ghgp_product_life_cycle_standard.pdf. Accessed 15 February 2016

Download references

Acknowledgements

The authors would like to acknowledge the financial support of CRÉPEC and of the following CIRAIG industrial partners: ArcelorMittal, Bell Canada, Bombardier, Cascades, Éco-Entreprises-Québec, RECYC-QUÉBEC, Groupe EDF/Gaz de France, Hydro-Québec, Johnson & Johnson, LVMH, Michelin, Mouvement des caisses Desjardins, Rio Tinto Alcan, RONA, SAQ, Solvay, Total, Umicore, and Veolia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viêt Cao.

Additional information

Responsible editor: Miguel Brandão

Electronic supplementary material

ESM 1

(DOCX 418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, V., Margni, M., Favis, B.D. et al. Choice of land reference situation in life cycle impact assessment. Int J Life Cycle Assess 22, 1220–1231 (2017). https://doi.org/10.1007/s11367-016-1242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-016-1242-2

Keywords

Navigation