Skip to main content

Advertisement

Log in

Environmental assessment of the production and addition of bioethanol produced from Eucalyptus globulus to gasoline in Chile

  • LIFE CYCLE ASSESSMENT: A TOOL FOR INNOVATION IN LATIN AMERICA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Bioethanol is not currently produced in Chile. However, mixtures of bioethanol-gasoline at 2 and 5 % have been authorized. The production and use of the bioethanol-gasoline blend “E5” has been assessed using life cycle assessment (LCA) with the aim to compare the environmental profiles of bioethanol produced from Eucalyptus globulus with gasoline in Chile and to determine the potential of this biofuel-replacing gasoline in the transport sector.

Methods

The standard framework of LCA described by ISO was selected to assess the ecological burdens derived from the biofuel production using the SimaPro v7.8 software. The system boundaries included eucalyptus cultivation, bioethanol production, E5 blend production, and final use of E5. The inventory data for Eucalyptus cultivation were previously collected through surveys with forest managers. Inventory data for bioethanol production were obtained by process simulation models using Aspen Plus v7.1, and for non-simulated or modeled information, secondary information (scientific articles and reports) was used. Conventional gasoline, produced and used in Chile, was used as base scenario for comparison with E5 scenario.

Results and discussion

The environmental results showed reduction of the environmental impacts in most of the assessed categories when E5 blend is assessed and compared with gasoline. Reduction was evident for climate change, photochemical oxidation formation, terrestrial acidification, marine eutrophication, terrestrial ecotoxicity, marine ecotoxicity, depletion of water, and fossil resources. However, there was an increase in other impact categories, such as ozone layer depletion, human toxicity, terrestrial ecotoxicity, and marine eutrophication. The hotspots for E5 blend were the blending production and the combustion in the engine, whereas in the production process, the electricity production was the major contributor to most of the impact categories. When increasing the bioethanol content from E5 to E10 blend, the environmental impact increases in most of the evaluated categories except in the CC, WD, and FD categories. However, compared with other studies related to wood-based E10, the values for the environmental impacts obtained were lower than the reported.

Conclusions

The use of E5 blend can help to reduce the environmental impact in 8 of the 12 categories analyzed. Environmental impacts obtained are lower compared with other studies reported for E10 blend production from wood resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Althaus H, Hischier R, Osses M (2007d) Life cycle inventory of chemicals. Report no 8. v2.0, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland

  • Althaus H, Chudacoff M, Hellweg S, Hischier R, Jungbluth N, Osses M, Primas A (2007a) Ammonia. Life cycle inventories of chemicals. Ecoinvent report no. 8, Swiss Centre for LCI, Dübendorf, Switzerland

  • Althaus H, Chudacoff M, Hellweg S, Hischier R, Jungbluth N, Osses M, Primas A (2007b) Chemicals inorganic, at plant/GLO U. Life cycle inventories of chemicals. Ecoinvent report no. 8, Swiss Centre for LCI, Dübendorf, Switzerland

  • Althaus H, Chudacoff M, Hellweg S, Hischier R, Jungbluth N, Osses M, Primas A (2007c) Sodium hydroxide, 50% in H2O, production mix, at plant/RER U. Life cycle inventories of chemicals. Ecoinvent report no. 8, Swiss Centre for LCI, Dübendorf, Switzerland

  • Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energ Combust 47:60–88

    Article  Google Scholar 

  • Baral A, Bakshi B, Smith R (2012) Assessing resource intensity and renewability of cellulosic ethanol technologies using eco-LCA. Environ Sci Technol 46:2436–2444

    Article  CAS  Google Scholar 

  • Bioenercel (2014) Diseño de procesos, selección de equipos y evaluación económica. Producción de bioetanol desde madera de eucalipto (Informe interno). Bioenercel S.A., Chile

  • BNE (2013) Balance Nacional de Energía 2012, division de prospectiva y política energética. Comision Nacional de Energía (CNE). Ministerio de Energía. Gobierno de Chile, Santiago, Chile

  • Briceño-Elizondo E, García-Gonzalo J, Peltola H, Kellomäki S (2006) Carbon stocks and timber yield in two boreal forest ecosystems under current and changing climatic conditions subjected to varying management regimes. Environ Sci Policy 9:237–252

    Article  Google Scholar 

  • Chen H, Fu X (2016) Industrial technologies for bioethanol production from lignocellulosic biomass. Renew Sust Energ Rev 57:468–478

    Article  CAS  Google Scholar 

  • Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recy 53:434–447

    Article  Google Scholar 

  • Dimitriou J, Mola-Yudego B, Aronsson P (2012) Impact of willow short rotation coppice on water quality. Bioenerg Res 5:537–545

    Article  CAS  Google Scholar 

  • Doka G (2007) Dsiposal gypsum, 19,4% water, to sanitary landfill/CHU. Building material dsiposal. Ecoinvent report n°13, swiss centre for LCI, Dübendorf, Switzerland

  • Edwards R, Larivé J-F, Mahieu V, Rouveirolles P (2007) Well-to-wheels analysis of future automotive fuels and powertrains in the European context, CONCAWE, EUCAR and JRC, 010307. EU

  • ENAP (2012a) Memoria anual 2012. Empresa Nacional de Petroleo, Chile

    Google Scholar 

  • ENAP (2012b) Reporte de Sustentabilidad 2012. Energía para un Chile más limpio. Empresa Nacional del Petróleo, Chile

    Google Scholar 

  • FAO (2008) Mercados de biocombustibles y efectos de las políticas. El estado mundial de la agricultura y la alimentación. Biocombustibles: perspectivas, riesgos y oportunidades. División de Economía de las Naciones Unidas para la Agricultura y la Alimentación (ESA), Rome, Italy

  • Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Zelm R (2009) ReCiPe 2008, a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, Report I: Characterization, PRé Consultants; CML, University of Leiden; Radboud University and RIVM, Holland

  • Gominho J, Lourenço A, Miranda I, Pereira H (2012) Chemical and fuel properties of stumps biomass from Eucalyptus globulus plantations. Ind Crop Prod 39:12–16

    Article  CAS  Google Scholar 

  • González-García S, Berg S, Feijoo G, Moreira MT (2009) Environmental impacts of forest production and supply of pulpwood: Spanish and Swedish case studies. Int J Life Cycle Assess 14:340–353

    Article  Google Scholar 

  • González-García S, Gasol CM, Gabarrel X, Rieradevall J, Moreira MT, Feijoo G (2010) Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe. Renew Energ 35:1014–1023

    Article  Google Scholar 

  • González-García S, Luo L, Moreira MT, Gumersindo F, Huppes G (2012a) Life cycle assessment of hemp hurds use in second generation ethanol production. Biomass Bioenerg 36:268–279

    Article  Google Scholar 

  • González-García S, Moreira MT, Feijoo G (2012b) Environmental aspects of eucalyptus based ethanol production and use. Sci Total Environ 438:1–8

    Article  Google Scholar 

  • González-García S, Moreira MT, Gumersindo F, Murphy J (2012c) Comparative life cycle assessment of ethanol production from fast-growing woods crops (black locust, eucalyptus and poplar). Biomass Bioenerg 39:378–388

    Article  Google Scholar 

  • González-García S, Mola-Yudego B, Murphy J (2013) Life cycle assessment of potential energy uses for short rotation willow (Salix spp.) biomass in Sweden. Int J Life Cycle Assess 18:783–795

    Article  Google Scholar 

  • Hahn-Hägerdal B, Karhumma B, Fonseca C, Spencer-Matins I, Gorwa-Grauslund ME (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  Google Scholar 

  • Heller M, Keoleian G, Volk T (2003) Life cycle assessment of a willow bioenergy cropping system. Biomass Bioenerg 25:147–165

    Article  CAS  Google Scholar 

  • Hinchee M, Rottmann W, Mullinax L, Zhang C, Chang S, Cunningham M, Pearson L, Nehra N (2009) Short-rotation woody crops for bioenergy and biofuels applications. In Vitro Cell Dev Biol, Plant 45:619–629

    Article  Google Scholar 

  • Huang J (2007) Life cycle analysis of hybrid poplar trees for cellulosic ethanol. Massachusetts Institute of Technology, Massachusetts

    Google Scholar 

  • IEA (2005) Biofuels for transport. An international perspective. International Energy Agency, France

    Google Scholar 

  • INFOR (2011) Chilean Forestry Sector 2011, Instituto Nacional Forestal, Ministerio de Agricultura. Gobierno de Chile, Santiago

    Google Scholar 

  • ISO (2006) 14044. Environmental management-life cycle assessment-requirement and guidelines. International Organization for Standardization, Switzerland

  • Jungbluth N (2007) Life cycle inventories of energy systems: results for current systems in Switzerland and other UCTE countries, Swiss Centre for LCI, Ecoinvent-Centre. Switzerland

  • Kadam K, Camobreco G, Forrest L, Jacobson W, Simeroth D, Blackbum W (1999) Environmental life cycle implications of fuel oxygenate production from California biomass, national renewable energy laboratory golden, NREL report no., NREL/TP-580-25688. Colorado, USA

  • Kodera K (2007) Analysis of allocation methods of bioethanol LCA. Leiden University, Amsterdam

    Google Scholar 

  • Limayem A, Ricke S (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energ Combust 38:449–467

    Article  CAS  Google Scholar 

  • Menichetti E, Otto M (2008) Energy balance and greenhouse gas emissions of biofuels from a life cycle perspective. In: Biofuels: environmental consequences and implications of changing land use. Gummersbach, pp. 81–109

  • Morales M, Aroca G, Rubilar R, Acuña E, Mola-Yudego B, González- García S (2015a) Cradle-to-gate life cycle assessment of Eucalyptus globulus short rotation plantations in Chile. J Clean Prod 99:239–249

    Article  Google Scholar 

  • Morales M, Gonzalez-García S, Aroca G, Moreira MT (2015b) Life cycle assessment of gasoline production and use in Chile. Sci Total Environ 505:833–843

    Article  CAS  Google Scholar 

  • Morales M, Quintero JA, Conejeros R, Aroca G (2015c) Life cycle assessment of lignocellulosic bioethanol: environmental impacts and energy balance. Renew Sust Energ Rev 42:1349–1361

    Article  CAS  Google Scholar 

  • Mu D, Seager T, Suresh RP, Zao F (2010) Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion. Environ Manage 46:565–578

    Article  Google Scholar 

  • Nemecek T, Kägi T (2007) Life cycle inventories of agricultural production systems. Ecoinvent report no 15, v2.0. Swiss Centre for Lyfe Cycle Inventories, Zürich and Dübendorf, Switzerland

  • Nguyen T, Hermansen J, Mogensen L (2011) Environmental assessment of Danish pork. Department of Agroecology and Research Centre Foulum, Aarhus University, Denmark

  • NREL (1999) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios. U.S. Department of Energy Laboratory, NREL/TP-580-26157, USA

  • Pascual-González J, Guillén-Gonsálbez G, Mateo-Sanz J, Jiménez-Esteller L (2016) Statistical analysis of the ecoinvent database to uncover relationships between life cycle impact assessment metrics. J Clean Prod 112:359–368

    Article  Google Scholar 

  • Pimentel D (1991) Ethanol fuels: energy security, economics, and the environment. J Agr Environ Ethic 4:1–13

    Article  Google Scholar 

  • Rahman M, Mostafiz S, Paatero J, Lahdelma R (2014) Extension of energy crops on surplus agricultural lands: a potentially viable option in developing countries while fossil fuel reserves are diminishing. Renew Sust Energ Rev 29:108–119

    Article  Google Scholar 

  • RFA (2015) World fuel ethanol production. Washington D.C., USA: Renewable Fuels Association

  • Rossier D (1998) Ecobilan: adaptation de la method ecobilan pour la gestion environnementale de l’exploitation agricole. Lausanne, Switzerland

  • Saha B (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  CAS  Google Scholar 

  • SEC (2012) Informe estadístico 2012, superintendencia de electricidad y combustibles. Gobierno de Chile, Chile

    Google Scholar 

  • Spielman M, Bauer C, Dones R, Tuchschmid M (2007) Transport services. Ecoinvent report 14, swiss centre for LCI, Ecoinvent-Centre. Dübendorf, Switzerland

  • Sutter J (2007) Ammonium chloride, at plant/GLO U. Life cycle inventories of highly pure chemicals. Ecoinvent report no. 19, Swiss Centre for LCI, Dübendorf, Switzerland

  • Tokman R, Huepe C (2008) Política energética: nuevos lineamientos. Comisión Nacional de Energía, Santiago

    Google Scholar 

  • Vázquez-Rowe I, Marvuglia A, Rege S, Benetto E (2014) Applying consequential LCA to support energy policy: land use change effects of bioernergy production. Sci Total Environ 472:78–89

    Article  Google Scholar 

  • Wiloso E, Heijungs R, Snoo G (2012) LCA of second generation bioethanol: a review and some issues to be resolved for good LCA practice. Renew Sust Energ Rev 16:5295–5308

    Article  CAS  Google Scholar 

  • Worldwatch I (2006) Biofuels for transportation. Global potential and implications for sustainable agriculture and energy in the 21st century, German federal ministry of food, agriculture and consumer protection (BMELV), agency for technical cooperation (GTZ) and the agency of renewable resources (FNR), Washington, DC

  • Zhi Fu G, Chan A, Minns D (2003) Life cycle assessment of bio-ethanol derived from cellulose. Int J Life Cycle Assess 8:137–141

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Innova Chile Project 208-7320 Technological Consortium Bioenercel S.A. The support granted to M. Morales by the CONICYT scholarship program (Comisión Nacional de Investigación Científica y Tecnológica) and the Pontificia Universidad Católica de Valparaíso is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjorie Morales.

Additional information

Responsible editor: Isabel Quispe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, M., Quintero, J. & Aroca, G. Environmental assessment of the production and addition of bioethanol produced from Eucalyptus globulus to gasoline in Chile. Int J Life Cycle Assess 22, 525–536 (2017). https://doi.org/10.1007/s11367-016-1119-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-016-1119-4

Keywords

Navigation