Skip to main content

Advertisement

Log in

Environmental life cycle assessment of biodiesel produced with palm oil from Colombia

  • LIFE CYCLE ASSESSMENT: A TOOL FOR INNOVATION IN LATIN AMERICA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Palm biodiesel life cycle studies have been mainly performed for Asia and focused on greenhouse gas (GHG) intensity. The purpose of this article is to present an environmental life cycle assessment (LCA) of biodiesel produced in Portugal from palm oil (PO) imported from Colombia, addressing the direct effects of land-use change (LUC), different fertilization schemes, and biogas management options at the extraction mill.

Methods

An LC inventory and model of PO biodiesel was implemented based on data collected in five Portuguese biodiesel plants and in a palm plantation and extraction mill in the Orinoquía Region of Colombia. The emissions due to carbon stock changes associated with LUC were calculated based on the Colombian oil palm area expansion from 1990 to 2010 and on historical data of vegetation cleared for planting new palm trees. Five impact categories were assessed based on ReCiPe and CML-IA methods: GHG intensity, freshwater and marine eutrophication, photochemical oxidant formation, terrestrial acidification. A sensitivity analysis of alternative allocation approaches was performed.

Results and discussion

Palm plantation was the LC phase which contributed the most to eutrophication and acidification impacts, whereas transportation and oil extraction contributed the most to photochemical oxidation. An increase in carbon stock due to LUC associated with the expansion of Colombian oil palm was calculated (palm is a perennial crop with higher carbon stock than most previous land-uses). The choice of the fertilization scheme that leads to the lowest environmental impacts is contradictory among various categories. The use of calcium ammonium nitrate (followed by ammonium sulfate) leads to the lowest acidification and eutrophication impacts. The highest GHG intensity was calculated for calcium ammonium nitrate, while the lowest was for ammonium sulfate and poultry manure. Biogas captured and flared at the oil extraction mill instead of being released into the atmosphere had the lowest impacts in all categories (GHG intensity reduced by more than 60 % when biogas is flared instead of released).

Conclusions

Recommendation on the selection of the fertilization scheme depends on the environmental priority. ReCiPe and CML showed contradictory results for eutrophication and photochemical oxidation; however, uncertainty may impair strong recommendations. GHG intensity and photochemical oxidation impacts can be significantly reduced if biogas is flared instead of being released. However, more efficient biogas management should be implemented in order to reduce the impacts further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achten WMJ, Van den Bempt P, Almeida J, Mathis E, Muys B (2010) Life cycle assessment of a palm oil system with simultaneous production of biodiesel and cooking oil in Cameroon. Environ Sci Technol 44(12):4809–4815

    Article  CAS  Google Scholar 

  • Althaus HJ, Chudacoff M, Hischier R, Jungbluth N, Osses M, Primas A (2007) Life Cycle Inventories of Chemicals. Final report ecoinvent data v2.0. Volume: 8. Swiss Centre for LCI, Empa - TSL. Dübendorf, Switzerland

  • Angarita EY, Lora ES (2009) The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renew Energy 34:2905–2913

    Article  Google Scholar 

  • Asman WAH (1992) Ammonia emission in Europe: updated emission and emission variations. Rep. 228471008. Bilthoven, the Netherlands: National Inst. of Public Health and Environmental Protection

  • Audsley E, Brander M, Chatterton J, Murphy-Bokern D, Webster C, Williams A (2009) How Low Can We Go? An Assessment of Greenhouse Gas Emissions from the UK Food System and the Scope to Reduce Them by 2050. WWF-UK

  • Bauer C (2007). Holzenergie. Sachbilanzen von Energiesystemen. Final report No. 6 ecoinvent data v2.0. Editors: Dones R. Volume: 6. Swiss Centre for LCI, PSI. Dübendorf and Villigen, Switzerland

  • Bouwman AF, Boumans LJM, Batjes NH (2002a) Emissions of N2O and NO from fertilised fields: summary of available measurement data. Glob Biogeochem Cycles 16:1058. doi:10.1029/2001GB001811

    Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002b) Modeling global annual N2O and NO emissions from fertilised fields. Glob Biogeochem Cycles 16:1080. doi:10.1029/2001GB001812

    Google Scholar 

  • Castanheira ÉG, Freire F (2011) Environmental performance of palm oil biodiesel in a life-cycle perspective. IEEE International Symposium on Sustainable Systems and Technology (ISSST), Chicago, 16–18 May 2011. doi:10.1109/ISSST.2011.5936843

  • Castanheira ÉG, Acevedo H, Freire F (2014) Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios. Appl Energy 114:958–967

    Article  CAS  Google Scholar 

  • Castanheira ÉG, Grisoli R, Coelho S, Silva GA, Freire F (2015) Life-cycle assessment of soybean-based biodiesel in Europe: comparing grain, oil and biodiesel import from Brazil. J Clean Prod 102:188–201

    Article  CAS  Google Scholar 

  • Cavalett O, Chagas MF, Seabra JEA, Bonomi A (2013) Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. Int J Life Cycle Assess 18:647–658

    Article  CAS  Google Scholar 

  • Cederberg C, Martin Persson U, Neovius K, Molander S, Clift R (2011) Including carbon emissions from deforestation in the carbon footprint of Brazilian beef. Environ Sci Technol 45(5):1773–1779

    Article  CAS  Google Scholar 

  • Cenipalma (2010) Analisis multitemporal de coberturas en areas de interes para el cultivo de la palma. (Multi-temporal analysis of coverage in areas of interest for oil palm cultivation.) 2000–2002; 2005–2007. Cenipalma - Centro de Investigación en Palma de Aceite. 2010. Internal report. Bogota.

  • Choo YM, Muhamad H, Hashim Z, Subramaniam V, Puah CW, Tan YA (2011) Determination of GHG contributions by subsystems in the oil palm supply chain using the LCA approach. Int J Life Cycle Assess 16:669–681

    Article  CAS  Google Scholar 

  • Corley RHV, Tinker PB (2003) The Oil Palm. World Agriculture Series, 4th edn. Oxford, UK, Blackwell Publishing

    Google Scholar 

  • Dreyer LC, Niemann AL, Hauschild MZ (2003) Comparison of three different LCIA methods: EDIP97, CML2001 and eco-indicator 99. Int J Life Cycle Assess 8:191–200

    Article  CAS  Google Scholar 

  • EC‐JRC (2011) International Reference Life Cycle Data System (ILCD) Handbook ‐ Recommendations for Life Cycle Impact Assessment in the European context. First edition. Luxemburg: European Commission‐Joint Research Centre ‐ Institute for Environment and Sustainability

  • Erisman JW, Grinsven H, Leip A, Mosier A, Bleeker A (2009) Nitrogen and biofuels; an overview of the current state of knowledge. Nutr Cycl Agroecosyst 86:211–223

    Article  Google Scholar 

  • European Commission (2009) Directive 2009/28/EC of the European Parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, Official Journal of the European Union, L140/16 of 5.6.2009

  • European Commission (2010a) Report from the Commission on indirect land-use change related to biofuels and bioliquids, COM (2010) 811 final. Brussels 22(12):2010

    Google Scholar 

  • European Commission (2010) Commission Decision of 10 June 2010 on guidelines for the calculation of land carbon stocks for the purpose of Annex V to Directive 2009/28/EC, Official Journal of the European Union, L151/19 of 17.6.2010

  • Faist Emmenegger M, Heck T, Jungbluth N (2007) Erdgas. Sachbilanzen von Energiesystemen. Final report No. 6 ecoinvent data v2.0. Editors: Dones R.. Volume: 6. Swiss Centre for LCI, PSI. Dübendorf and Villigen, Switzerland

  • Faist Emmenegger M, Reinhard J, Zah R (2009) Sustainability Quick Check for Biofuels – intermediate background report. With contributions from T. Ziep, R. Weichbrodt, Prof. Dr. V. Wohlgemuth, FHTW Berlin and A. Roches, R. Freiermuth Knuchel, Dr. G. Gaillard, Agroscope Reckenholz-Tänikon. Dübendorf, Switzerland

  • FAO and IFA (2001) Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land. First version, published by Food and Agriculture Organization of the United Nations (FAO) and International Fertilizer Industry Association (IFA). Rome, 2001

  • FAO (2013) FAOSTAT. Food and Agriculture Organization of the United Nations, Available at: http://www.fao.org/economic/est/prices

  • Fedepalma (2009) Anuario estadistico 2009—la agroindustria de la palma de aceite en Colombia. Bogota, Colombia

    Google Scholar 

  • Finkbeiner M (2013) Indirect land use change (iLUC) within life cycle assessment (LCA) e scientific robustness and consistency with international standards. Berlin, Germany: Association of the German Biofuel Industry, Verband der ӧlsaatenverarbeitenden Industriein Deutschland; 2013

  • Frischknecht R, Fantke P, Tschümperlin L, Niero M, Antón A, Bare J, Boulay AM, Cherubini F, Hauschild MZ, Henderson A, Levasseur A, McKone TE, Michelsen O, Milà i Canals L, Pfister S, Ridoutt B, Rosenbaum RK, Verones F, Vigon B, Jolliet O (2016) Global guidance on environmental life cycle impact assessment indicators: progress and case study. Int J Life Cycle Assess 21:429–442

    Article  Google Scholar 

  • Garcia R, Marques P, Freire F (2014) Life-cycle assessment of electricity in Portugal. Appl Energ 134:563–572

    Article  CAS  Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts M, Schryver A, Struijs J, van Zelm R (2012) 2012) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; First edition (revised. Characterisation, Report I

    Google Scholar 

  • Guinée J, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, Huijbregts M (2002) Handbook on Life Cycle Assessment – Operational Guide to the ISO Standards. I. LCA in Perspective; IIa: Guide; IIb: Operational Annex III: Scientific Background. Dordrecht: Kluwer Academic Publishers

  • Hansen SB, Olsen SI, Ujang Z (2012) Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel. Bioresour Technol 104:358–366

    Article  CAS  Google Scholar 

  • Harsono SS, Prochnow A, Grundmann P, Hansen A, Hallmann C (2012) Energy balances and greenhouse gas emissions of palm oil biodiesel in Indonesia. GCB Bioenergy 4:213–228

    Article  CAS  Google Scholar 

  • Hassan MNA, Jaramillo P, Griffin WM (2011) Life cycle GHG emissions from Malaysian oil palm bioenergy development: the impact on transportation sector’s energy security. Energy Policy 39:2615–2625

    Article  CAS  Google Scholar 

  • Henson IE, Ruiz RR, Romero HM (2012) The greenhouse gas balance of the oil palm industry in Colombia : a preliminary analysis. II. Greenhouse gas emissions and the carbon budget. Agron Colombiana 30:370–378

    Google Scholar 

  • IEA (2009) Electricity/Heat in Colombia in 2008. International Energy Agency-IEA, Paris, France

    Google Scholar 

  • IFA (2013) Statistics-IFADATA. IFA-International Fertilizer Industry Association, Available at: http://www.fertilizer.org/ifa/ifadata/results

  • IPCC (2006) IPCC guidelines for national greenhouse gas inventories. Prepared by the National Greenhouse Gas Inventories Programme, Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.). Hayama, Japan: Institute for Global Environmental Strategies

  • IPCC (2007) IPCC Fourth Assessment Report: Climate Change 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Cambridge, United Kingdom and New York, USA: Cambridge University Press

  • Jolliet O, Frischknecht R, Bare J, Boulay A-M, Bulle C, Fantke P, Gheewala S, Hauschild M, Itsubo N, Margni M, McKone TE, Canals LM, Postuma L, Prado-Lopez V, Ridoutt B, Sonnemann G, Rosenbaum RK, Seager T, Struijs J, van Zelm R, Vigon B, Weisbrod A (2014) Global guidance on environmental life cycle impact assessment indicators: findings of the scoping phase. Int J Life Cycle Assess 19:962–967

    Article  Google Scholar 

  • Jungbluth N (2007) Erdöl. Sachbilanzen von Energiesystemen. Final report No. 6 ecoinvent data v2.0. Editors: Dones R. Volume: 6. Swiss Centre for LCI, PSI. Dübendorf and Villigen, Switzerland

  • Jungbluth N, Chudacoff M, Dauriat A, Dinkel F, Doka G, Faist Emmenegger M, Gnansounou E, Kljun N, Spielmann M, Stettler C, Sutter J (2007) Life Cycle Inventories of Bioenergy. Final report ecoinvent data v2.0. Volume: 17. Swiss Centre for LCI, ESU. Duebendorf and Uster, Switzerland

  • Kaewmai R, Kittikun H, Musikavong C (2012) Greenhouse gas emissions of palm oil mills in Thailand. Int J Greenh Gas Con 11:141–151

    Article  CAS  Google Scholar 

  • Klepper O, Beusen AHW, Meinardi CR (1995) Modelling the flow of nitrogen and phosphorus in Europe: from loads to coastal seas. RIVM report 451501004, RIVM, Bilthoven, the Nederlands

  • Lam MK, Lee KT (2011) Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection. Biotechnol Adv 29:124–41

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2009) Life cycle assessment for the production of biodiesel: a case study in Malaysia for palm oil versus jatropha oil. Biofuels Bioprod Bioref 3:601–12

    Article  CAS  Google Scholar 

  • Lechon Y, Cabal H, Sáez R (2011) Life cycle greenhouse gas emissions impacts of the adoption of the EU Directive on biofuels in Spain. Effect of the import of raw materials and land use changes. Biomass Bioenerg 35:2374–2384

    Article  CAS  Google Scholar 

  • Malça J, Freire F (2010) Uncertainty analysis in biofuel systems: an application to the life cycle of rapeseed oil. J Ind Ecol 14:322–334

    Article  Google Scholar 

  • Malça J, Freire F (2011) Life-cycle studies of biodiesel in Europe: a review addressing the variability of results and modeling issues. Renew Sustain Energy Rev 15:338–351

    Article  Google Scholar 

  • Manik Y, Halog A (2012) A meta-analytic review of life cycle assessment and flow analyses studies of palm oil biodiesel. Integr Environ Assess Manag 9(1):134–141

    Article  Google Scholar 

  • Muñoz I, Schmidt JH, Brandão M, Weidema BP (2014) Avoiding the streetlight effect: Rebuttal to ‘Indirect land use change (iLUC) within life cycle assessment (LCA) – scientific robustness and consistency with international standards’ by prof. Dr. Matthias Finkbeiner. 2.‐0 LCA consultants, Aalborg 17th September 2014

  • Nemecek T, Kägi T (2007) Life Cycle Inventories of Swiss and European Agricultural Production Systems. Final report ecoinvent V2.0 No. 15a., Agroscope Reckenholz-Taenikon Research Station ART, Swiss Centre for Life Cycle Inventories, Zurich and Dübendorf, Switzerland

  • OECD-FAO (2013) OECD – FAO Agricultural Outlook 2013–2022 Highlights. Available at: http://www.oecd.org/

  • Papong S, Chom-In T, Noksa-nga S, Malakul P (2010) Life cycle energy efficiency and potentials of biodiesel production from palm oil in Thailand. Energy Policy 38:226–233

    Article  CAS  Google Scholar 

  • Patthanaissaranukool W, Polprasert C, Englande AJ (2013) Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances. Appl Energy 102:710–717

    Article  CAS  Google Scholar 

  • Pinzon L (2012) Colombia: Biofuels annual. Colombian Biofuels Use Close to reaching E10 and B10 Levels. Gain Report. US Department of Agriculture, Washington, DC

  • Pleanjai S, Gheewala SH (2009) Full chain energy analysis of biodiesel production from palm oil in Thailand. Appl Energy 86:S209–S214

    Article  CAS  Google Scholar 

  • Prasuhn V (2006) Erfassung der PO4-Austräge für die Ökobilanzierung SALCA Phosphor. Agroscope Reckenholz - Tänikon ART, 20 p

  • Queiroz AG, França L, Ponte MX (2012) The life cycle assessment of biodiesel from palm oil (“dendê”) in the Amazon. Biomass Bioenerg 36:50–59

    Article  CAS  Google Scholar 

  • Reijnders L, Huijbregts MAJ (2008) Palm oil and the emission of carbon-based greenhouse gases. J Clean Prod 16:477–482

    Article  Google Scholar 

  • Reijnders L, Huijbregts MAJ (2011) Nitrous oxide emissions from liquid biofuel production in life cycle assessment. Curr Opin Environ Sust 3(5):432–437

    Article  Google Scholar 

  • Reinhard J, Zah R (2009) Global environmental consequences of increased biodiesel consumption in Switzerland: consequential life cycle assessment. J Clean Prod 17:S46–S56

    Article  CAS  Google Scholar 

  • Rincón V (2009) Dinámica de la expansión del área cultivada com palma de aceite y su impacto en la cobertura del suelo: Zona Oriental palmera de Colombia (1972–2009). MSc. Universitat de Girona, Girona, Spain

    Google Scholar 

  • Rodrigues TO, Caldeira-Pires A, Luz S, Frate CA (2014) GHG balance of crude palm oil for biodiesel production in the northern region of Brazil. Renew Energ 62:516–521

    Article  CAS  Google Scholar 

  • Romero-Ruiz MH, Flantua SG, Tansey K, Berrio JC (2012) Landscape transformations in savannas of northern South America: land use/cover changes since 1987 in the Llanos Orientales of Colombia. Appl Geogr 32:766–776

    Article  Google Scholar 

  • Schmidt JH (2007) Life cycle assessment of rapeseed oil and palm oil. Ph.D. thesis, Part 3: Life cycle inventory of rapeseed oil and palm oil. Department of Development and Planning, Aalborg University

  • Schmidt JH (2010) Comparative life cycle assessment of rapeseed oil and palm oil. Int J Life Cycle Assess 15:183–197

    Article  CAS  Google Scholar 

  • Schmidt JH, Weidema BP, Brandão M (2015) A framework for modelling indirect land use changes in life cycle assessment. J Clean Prod 99:230–238

    Article  Google Scholar 

  • Siangjaeo S, Gheewala SH, Unnanon K, Chidthaisong A (2011) Implications of land use change on the life cycle greenhouse gas emissions from palm biodiesel production in Thailand. Energy Sustain Dev 15:1–7

    Article  CAS  Google Scholar 

  • Silalertruksa T, Gheewala SH (2012) Environmental sustainability assessment of palm biodiesel production in Thailand. Energy 43:306–314

    Article  CAS  Google Scholar 

  • Souza SP, Pacca S, Ávila MT, Borges JLB (2010) Greenhouse gas emissions and energy balance of palm oil biofuel. Renew Energ 35:2552–2561

    Article  Google Scholar 

  • Souza SP, Ávila MT, Pacca S (2012) Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production. Biomass Bioenerg 44:70–79

    Article  CAS  Google Scholar 

  • Spielmann M, Dones R, Bauer C (2007) Life Cycle Inventories of Transport Services. Final report ecoinvent Data v2.0, Vol. 14, Dübendorf and Villigen, Switzerland, Swiss Centre for LCI, PSI

  • Stichnothe H, Schuchardt F (2010) Comparison of different treatment options for palm oil production waste on a life cycle basis. Int J Life Cycle Assess 15(9):907–915

    Article  CAS  Google Scholar 

  • Stichnothe H, Schuchardt F (2011) Life cycle assessment of two palm oil production systems. Biomass Bioenerg 35(9):3976–3984

    Article  CAS  Google Scholar 

  • Sutter J (2007) Life Cycle Inventories of Highly Pure Chemicals. Final report ecoinvent Data v2.0. Editors: 0. Volume: 19. Swiss Centre for LCI, ETHZ. Duebendorf and St. Gallen, Switzerland

  • Thamsiriroj T, Murphy JD (2009) Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed? Appl Energy 86:595–604

    Article  CAS  Google Scholar 

  • USDA (1999) Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Agriculture Handbook. Number 436, United States Department of Agriculture Natural Resources Conservation Service

  • van der Voet E, Lifset RJ, Luo L (2010) Life-cycle assessment of biofuels, convergence and divergence. Biofuels 1(3):435–449

    Article  Google Scholar 

  • Van Zelm R, Huijbregts MAJ, Den Hollander HA, Van Jaarsveld HA, Sauter FJ, Struijs J, Van Wijnen HJ, Van de Meent D (2008) European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos Environ 42:441–453

    Article  Google Scholar 

  • Vázquez-Rowe I, Rege S, Marvuglia A, Thénie J, Haurie A, Benetto E (2013) Application of three independent consequential LCA approaches to the agricultural sector in Luxembourg. Int J Life Cycle Assess 18(8):1593–1604

    Article  Google Scholar 

  • von Uexküll HR, Fairhurst TH (1991) Fertilizing for high yield and quality. The oil palm. IPI, Bern, 79 p

    Google Scholar 

  • Wicke B, Dornburg V, Junginger M, Faaij A (2008) Different palm oil production systems for energy purposes and their greenhouse gas implications. Biomass Bioenerg 32:1322–1337

    Article  CAS  Google Scholar 

  • World Bank (2013) World Bank Commodity Price Data. World Bank. Available at: http://www.indexmundi.com/commodities/?commodity=food-price-index

  • Yee KF, Tan KT, Abdullah AZ, Lee KT (2009) Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Appl Energy 86:S189–S196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research presented in this article was supported by the Portuguese Science and Technology Foundation (FCT) projects: PTDC/SEN-TRA/117251/2010 (Extended “well-to-wheels” assessment of biodiesel for heavy transport vehicles) and PTDC/EMS-ENE/1839/2012 (Sustainable mobility: Perspectives for the future of biofuel production). This work was also framed under the Energy for Sustainability Initiative of the University of Coimbra-Portugal, MIT-Portugal Program and supported by the R&D project EMSURE (Energy and Mobility for Sustainable Regions, CENTRO 07 0224 FEDER 002004). Érica Castanheira gratefully acknowledges financial support from FCT, through grant SFRH/BD/60328/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Freire.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Isabel Quispe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castanheira, É.G., Freire, F. Environmental life cycle assessment of biodiesel produced with palm oil from Colombia. Int J Life Cycle Assess 22, 587–600 (2017). https://doi.org/10.1007/s11367-016-1097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-016-1097-6

Keywords

Navigation