Skip to main content
Log in

Recombination and its roles in DNA repair, cellular immortalization and cancer

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Genetic recombination is the creation of new gene combinations in a cell or gamete, which differ from those of progenitor cells or parental gametes. In eukaryotes, recombination may occur at mitosis or meiosis. Mitotic recombination plays an indispensable role in DNA repair, which presumably directed its early evolution; the multiplicity of recombination genes and pathways may be best understood in this context, although they have acquired important additional functions in generating diversity, both somatically (increasing the immune repertoire) and in germ line (facilitating evolution). Chromosomal homologous recombination and HsRad51 recombinase expression are increased in both immortal and preimmortal transformed cells, and may favor the occurrence of multiple oncogenic mutations. Tumorigenesis in vivo is frequently associated with karyotypic instability, locus-specific gene rearrangements, and loss of heterozygosity at tumor suppressor loci — all of which can be recombinationally mediated. Genetic defects which increase the rate of somatic mutation (several of which feature elevated recombination) are associated with early incidence and high risk for a variety of cancers. Moreover, carcinogenic agents appear to quite consistently stimulate homologous recombination. If cells with high recombination arise, either spontaneously or in response to “recombinogens,” and predispose to the development of cancer, what selective advantage could favor these cells prior to the occurrence of growth-promoting mutations? We propose that the augmentation of telomere-telomere recombination may provide just such an advantage, to hyper-recombinant cells within a population of telomerase-negative cells nearing their replicative (Hayflick) limit, by extending telomeres in some progeny cells and thus allowing their continued proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almasan, A, Linke, SP, Paulson, TG, Huang, L, and Wahl, GM: Genetic instability as a consequence of inappropriate entry into and progression through S-phase. Cancer Metas. Rev., 14: 59–73, 1995.

    CAS  Google Scholar 

  2. Althaus, FR, and Richter, C: ADP-ribosylation of proteins: Enzymology and Biological Significance, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  3. Amstutz, H., Munz, P, Heyer, WD, Leupold, U, Kohli, J: Concerted evolution of tRNA genes: intergenic conversion among three unlinked serine tRNA genes in S. pombe. Cell, 40: 879–886, 1985.

    PubMed  CAS  Google Scholar 

  4. Asai, T, Sommer, S, Bailone, A, Kogoma, T: Homologous recombination-dependent initiation of DNA replication from DNA damage-inducible origins in Escherichia coli. EMBO J., 12: 3287–3295, 1993.

    PubMed  CAS  Google Scholar 

  5. Anderson, RA, and Eliason, SL: Recombination of homologous DNA fragments transfected into mammalian cells occurs predominantly by terminal pairing. Mol. Cell. Biol., 6: 3246–3252, 1986.

    PubMed  CAS  Google Scholar 

  6. Ashby, J, Tennant, RW: Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the US NCI/NTP. Mutat.Res., 204: 17–115, 1988.

    PubMed  CAS  Google Scholar 

  7. Avilion, AA, Piatyszek, MA, Gupta, J, Shay, JW, Becchetti, S, Greider, CW: Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues. Cancer Research, 56: 645–650, 1996.

    PubMed  CAS  Google Scholar 

  8. Ayares D, Cherkuri L, Song K-Y, and Kucherlapati R. 1986. Sequence homology requirements for intermolecular recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 83:5199–5203.

    PubMed  CAS  Google Scholar 

  9. Baker, BS, Carpenter, TC, Esposito, MS, Esposito, RE, and Sandler, L: The genetic control of meiosis. Ann. Rev. Genet., 10: 53–134, 1976.

    PubMed  CAS  Google Scholar 

  10. Banin, S, Moyal, L, Shieh, S, Taya, Y, Anderson, CW, Chessa, L, Smorodinsky, NI, Prives, C, Reiss, Y, Shiloh, Y, Ziv, Y: Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 281: 1674–1677, 1998.

    PubMed  CAS  Google Scholar 

  11. Basile, G, Aker, M, and Mortimer, RK: Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51. Mol. Cell. Biol., 12: 3235–3246, 1992.

    PubMed  CAS  Google Scholar 

  12. Benson, FE, Stasiak, A., and West, SC: Purification and characterization of human Rad51 protein, an analogue of E. coli RecA. EMBO J., 13: 5764–5771, 1994.

    PubMed  CAS  Google Scholar 

  13. Bergsagel PL, Chesi M, Nardini E, Brents LA, Kirby SL, Kuehl WM Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA 93: 13931–13936, 1996.

    Google Scholar 

  14. Bishop, DK., Park, D, Xu, L, and Kleckner, N: DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell, 69: 439–456, 1992.

    PubMed  CAS  Google Scholar 

  15. Bishop, JM: The molecular genetics of cancer. Science, 253: 305–311, 1987.

    Google Scholar 

  16. Blackburn, EH: Telomerases. Ann. Rev. Biochem., 61: 113–129, 1992.

    PubMed  CAS  Google Scholar 

  17. Boissinot, S, Tan, Y, Shyue, SK, Schneider, H, Sampaio, I, Neiswanger, K, Hewett-Emmett, D, Li, WH: Origins and antiquity of X-linked triallelic color vision systems in new world monkeys. Proc. Natl. Acad. Sci. U S A, 95: 13749–13754, 1998.

    Google Scholar 

  18. Bootsma, D, Weeda, G, Vermeulen, W, van Vuuren, H, Troelstra, C, van der Spek, P, Hoeijmakers, J: Nucleotide excision repair syndromes: molecular basis and clinical symptoms. Phil. Trans. Roy. Soc. London B, 347: 75–81, 1995.

    PubMed  CAS  Google Scholar 

  19. Borowiec, JA, and Hurwitz, J: ATP stimulates the binding of simian virus 40 (SV40) large tumor antigen to the SV40 origin of replication. Proc. Natl. Acad. Sci. USA, 85: 64–68, 1988.

    PubMed  CAS  Google Scholar 

  20. Borowiec, JA, and Hurwitz, J: Localized melting and structural changes in the SV40 origin of replication induced by T antigen. EMBO J., 7: 3149–3158, 1988.

    PubMed  CAS  Google Scholar 

  21. Brinster, RL, Chen, HY, Messing, A, Van Dyke, T, Levine, AJ, and Palmiter, RD: Transgenic mice harboring SV40 T antigen genes develop characteristic brain tumors. Cell, 37: 367–379, 1984.

    PubMed  CAS  Google Scholar 

  22. Broccoli, D, Smogorzewska, A, Chong, L, de Lange, T: Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nature Genetics, 17: 231–235, 1997.

    PubMed  CAS  Google Scholar 

  23. Bryan, TM, Englezou, A, Gupta, J, Bacchetti, S, Reddel, RR: Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J., 14: 4240–4248, 1995.

    PubMed  CAS  Google Scholar 

  24. Busser, MT, and Lutz, WK: Stimulation of DNA synthesis in rat and mouse liver by various tumor promoters. Carcinogenesis, 8: 1433–1437, 1987.

    PubMed  CAS  Google Scholar 

  25. Cairns, J: The origin of human cancers. Nature, 289: 353–357, 1981.

    PubMed  CAS  Google Scholar 

  26. Canman, CE, Lim, DS, Cimprich, KA, Taya, Y, Tamai, K, Sakaguchi, K, Appella, E, Kastan, MB, Siliciano, JD: Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science, 281: 1677–1679, 1998.

    PubMed  CAS  Google Scholar 

  27. Cavenee, WK, Dryja, TP, Phillips, RA, Benedict, WF, Godbout, R, Gallie, BL, Murphree, AL, Strong, LC, and White, RL: Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature, 305: 779–784, 1983.

    PubMed  CAS  Google Scholar 

  28. Chen, W, Jinks-Robertson, S: Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast. Mol. Cell. Biol., 18: 6525–6537, 1998.

    PubMed  CAS  Google Scholar 

  29. Cheng, RZ, Murano, S, Kurz, BW, and Shmookler Reis RJ: Homologous recombination is elevated in some Werner-iike syndromes but not during normal in vitro or in vivo senescence of human cells. Mutat. Res., 237: 259–269, 1991.

    Google Scholar 

  30. Cheng, RZ, Shammas, MA, Li, J, and Shmookler Reis, RJ: Expression of SV40 large T antigen stimulates reversion of a chromosomal gene duplication in human cells. Exp. Cell Res., 234: 300–312, 1997.

    PubMed  CAS  Google Scholar 

  31. Chou, JY, and Martin, RG: DNA infectivity and the induction of host DNA synthesis with temperature-sensitive mutants of simian virus 40. J. Virol., 15: 145–150, 1975.

    PubMed  CAS  Google Scholar 

  32. Counter, CM, Avilion, AA, LeFeuvre CE, Stewart, NG, Greider, CW, Harley, CB, Bacchetti, S: Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO, J., 11: 1921–1929, 1992.

    CAS  Google Scholar 

  33. Creissen, D, and Shall, S: Regulation of DNA ligase activity by poly (ADP-ribose). Nature, 296: 271–272, 1982.

    PubMed  CAS  Google Scholar 

  34. Davis, MM, Calame, K, Early PW, Livant, DL, Joho, R, Weissman, IL, and Hood, L: An immunoglobulin heavy chain is formed by two recombinational events. Nature, 283: 733–739, 1980.

    PubMed  CAS  Google Scholar 

  35. Day, JP, Marder, BA, Morgan, WF: Telomeres and their possible role in chromosome stabilization. Environ. Mol. Mutagen., 22: 245–249, 1993.

    PubMed  CAS  Google Scholar 

  36. DeCaprio, JA., Ludlow, JW, Figge, J, Shew, JY, Huang, CM., Lee, WH., Marcilio, E, Paucha, E, and Livingston, DM: SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell, 54: 275–283, 1990.

    Google Scholar 

  37. Derbyshire, MK., Epstein, LH., Young, CSH., Munz, PL, and Fishel, R: Nonhomologous recombination in human cells. Mol. Cell. Biol., 14: 156–169, 1994.

    PubMed  CAS  Google Scholar 

  38. Dhaliwal, MK, Satya-Prakash, KL, Davis, PC, and Pathak, S: High frequency of telomeric association in a family with multiple congenital neoplasia. In Vivo, 8: 1023–1026, 1994.

    PubMed  CAS  Google Scholar 

  39. Dickmanns, A, Zeitvogel, A, Simmersbach, F, Weber, R, Arthur, AK, Dehde, S, Wildeman, A. G, and Fanning, E: The kinetics of simian virus 40-induced progression of quiescent cells into S phase depend on four independent functions of large T antigen. J. Virol., 68: 5496–5508, 1994.

    PubMed  CAS  Google Scholar 

  40. Digweed, M: Human genetic instability syndromes: single gene defects with increased risk of cancer. Toxicol. Lett., 67: 259–281, 1993.

    PubMed  CAS  Google Scholar 

  41. Dodson, M., Dean, FB, Bullock, P, Echols, H., and Hurwitz, J: Unwinding of duplex DNA from the SV40 origin of replication by T antigen. Science, 238: 964–967, 1987.

    PubMed  CAS  Google Scholar 

  42. Dornreiter, I, Hoss, A, Arthur, AK, and Fanning, E: SV40 T-antigen binds directly to the large subunit of purified DNA polymerase. EMBO J., 9: 3329–3336, 1990.

    PubMed  CAS  Google Scholar 

  43. Drize, OB, Sokova, OI, Nikashina, EB, Shliankevich, MA, and Shapot, VS: Possible role of T antigen in inducing chromosome aberrations in SV40 virus-transformed cells. Tsitologiia 27: 76–82, 1985.

    PubMed  CAS  Google Scholar 

  44. Duesberg, PH., Goodrich, D, and Zhou, R: Cancer genes by non-homologous recombination. Bas. Life Sci., 57: 197–211, 1991.

    CAS  Google Scholar 

  45. Early, P, Huang, H, Davis, M, Calame, K, and Hood, L: An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D, and JH. Cell, 19: 981–992, 1980.

    PubMed  CAS  Google Scholar 

  46. El-Deiry WS, Harper, JW, O’Connor, PM, Velculescu, VE, Canman, CE, Jackman, J, Pietenpol, JA, Burrell, M, Hill, DE, Wang, Y, Wiman, KG, Mercer, WE, Kastan, MB, Kohn, KW, Elledge, SJ, Kinzler, KW, Vogelstein, B: WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res., 54: 1169–1174, 1994.

    PubMed  CAS  Google Scholar 

  47. Ellis, NA, Groden, J, Ye, TZ, Straughen, J, Lennon, DJ, Ciocci, S, Proytcheva, M, German, J: The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell, 83: 655–666, 1995.

    PubMed  CAS  Google Scholar 

  48. Esposito, MS: Evidence that spontaneous mitotic recombination occurs at the two-strand stage. Proc. Natl. Acad. Sc. USA, 75: 4436–4440, 1978.

    CAS  Google Scholar 

  49. Fabre, F: Induced intragenic recombination in yeast can occur during the G1 mitotic phase. Nature 272: 795–798, 1978.

    PubMed  CAS  Google Scholar 

  50. Fanning, E, and Knippers, R: Structure and function of simian virus 40 large tumor antigen. Ann. Rev. Biochem., 61: 55–85, 1992.

    PubMed  CAS  Google Scholar 

  51. Farber, E: The multistep nature of cancer development. Cancer Res., 44: 4217–4223, 1984.

    PubMed  CAS  Google Scholar 

  52. Feunteun, J: Breast Cancer and genetic instability: the molecules behind the scenes. Mol. Med. Today, 4: 263–267, 1998.

    PubMed  CAS  Google Scholar 

  53. Finn, GK, Kurz, BW, Cheng, RZ, and Shmookler Reis, RJ: Homologous plasmid recombination is elevated in immortally transformed cells. Mol. Cell. Biol., 9: 4009–4017, 1989.

    PubMed  CAS  Google Scholar 

  54. Fitzgerald PH, Morris CM: Telomeric association of chromosomes in B-cell lymphoid leukemia. Hum Genet. 67: 385–390, 1984.

    PubMed  CAS  Google Scholar 

  55. Folger, KR, Thomas, K, and Capecchi, MR: Nonreciprocal exchanges of information between DNA duplexes coinjected into mammalian cell nuclei. Mol. Cell. Biol., 5: 59–69, 1985.

    PubMed  CAS  Google Scholar 

  56. Fornace, AJ, Jr., Nebert, DW, Hollander, MC, Luethy, JD, Papathanasiou, M, Fargnoli, J, and Holbrook, NJ: Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol. Cell. Biol., 9: 4196–4203, 1989.

    PubMed  CAS  Google Scholar 

  57. Friedberg, EC, Siede, W, Cooper, AJ: In: Broach J. R., Pringle, J. R., and Jones, E. W. (eds): The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics, vol. 1, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 147–192, 1991.

    Google Scholar 

  58. Fukuchi K, Martin GM, and Monnat RJ Jr.: Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci U S A, 86: 5893–5897, 1989.

    PubMed  CAS  Google Scholar 

  59. Galli, A, and Schiestl, RH: On the mechanism of UV and gamma-ray-induced intrachromosomal recombination in yeast cells synchronized in different stages of the cell cycle. Mol. Gen. Genet., 248: 301–310, 1995.

    PubMed  CAS  Google Scholar 

  60. Gee CJ, and Harris H: Tumorigenicity of cells transformed by Simian virus 40 and of hybrids between such cells and normal diploid cells. J. Cell Sci., 36: 223–240, 1979.

    PubMed  CAS  Google Scholar 

  61. German J: Chromosome-breakage syndromes: different genes, different treatments, different cancers. Basic Life Sci. 15:429–439, 1980.

    PubMed  CAS  Google Scholar 

  62. Gloor, GB, Nassif, NA, Johnson-Schlitz, DM, Preston, CR, Engels, WR: Targeted gene replacement in Drosophila via P element-induced gap repair. Science, 253:1110–1117, 1991.

    PubMed  CAS  Google Scholar 

  63. Goldstein, S, Fordis, CM., and Howard, BH: Enhanced transfection efficiency and improved cell survival after electroporation of G2/M-synchronized cells and treatment with sodium butyrate. Nucl. Acids Res., 17: 3959–3971, 1989.

    PubMed  CAS  Google Scholar 

  64. Gollahon, LS, Kraus, E, Wu, TA, Yim, SO, Strong, LC, Shay, JW, and Tainsky, MA: Telomerase activity during spontaneous immortalization of Li-Fraumeni syndrome skin fibroblasts. Oncogene (check), 709–717, 1998.

  65. Gorman, SD, and Cristofalo, VJ: Reinitiation of cellular DNA synthesis in BrdU-selected nondividing senescent WI-38 cells by simian virus 40 infection. J. Cell. Physiol., 125: 122–126, 1985.

    PubMed  CAS  Google Scholar 

  66. Gray, MD, Shen, JC, Kamath-Loeb, AS, Blank, A, Sopher, BL, Martin, GM, Oshima, J, and Loeb, LA: The Werner syndrome protein is a DNA helicase. Nature Genetics, 17: 100–103, 1997.

    PubMed  CAS  Google Scholar 

  67. Grell, RF: Time of recombination in the Drosophila melanogaster oocyte: evidence from a temperature-sensitive recombination-deficient mutant. Proc. Natl. Acad. Sciences USA, 75: 3351–3354, 1978.

    CAS  Google Scholar 

  68. Griffith, J, Bianchi, A, and de Lange, T: TRF1 promotes parallel pairing of telomeric tracts in vitro. J. Mol. Biol, 278: 79–88, 1998.

    PubMed  CAS  Google Scholar 

  69. Griffith, JD, Comeau, L, Rosenfield, S, Stansel, RM, Bianchi, A, Moss, H, and De Lange, T: Mammalian telomeres end in a large duplex loop. Cell, 97: 503–514, 1999.

    PubMed  CAS  Google Scholar 

  70. Gurney, T, and Gurney, EG: Spontaneous rearrangement of integrated simian virus 40 DNA in nine transformed rodent cell lines. J. Virol., 63: 165–174, 1989.

    PubMed  CAS  Google Scholar 

  71. Hanahan, D: Heritable formation of pancreatic beta-cell tumors in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature, 315: 115–122, 1985.

    PubMed  CAS  Google Scholar 

  72. Harley, CB, Futcher, AB, Greider, CW: Telomeres shorten during ageing of human fibroblasts. Nature, 345: 458–460, 1990.

    PubMed  CAS  Google Scholar 

  73. Hastie, ND, and Allshire, RC: Human telomeres: fusion and interstitial sites. Trends Genet., 5: 326–331, 1989.

    PubMed  CAS  Google Scholar 

  74. Hastie, ND, Dempster, M, Dunlop, MG, Thompson, AM, Green, DK, and Allshire, RC: Telomere reduction in human colorectal carcinoma and with ageing. Nature, 346: 866–868, 1990.

    PubMed  CAS  Google Scholar 

  75. Hayflick, L: The cellular basis for biological aging, in: Handbook of the Biology of Aging (Finch, CE, and Hayflick, L, eds.) Van Nostrand Reinhold Co., N.Y., pp. 159–186, 1977.

    Google Scholar 

  76. Heddle JA: Implications for genetic toxicology of the chromosomal breakage syndromes. Mutat. Res. 247: 221–229, 1991.

    PubMed  CAS  Google Scholar 

  77. Holliday, R: A mechanism for gene conversion in fungi. Genet. Res., 5: 282–304, 1964.

    Google Scholar 

  78. Hollstein, M, Sidransky, D, Vogelstein, B, and Harris, CC: p53 mutations in human cancers. Science, 253: 49–53, 1991.

    PubMed  CAS  Google Scholar 

  79. Honma, M, Zhang, LS, Hayashi, M, Takeshita, K, Nakagawa, Y, Tanaka, N, Sofuni, T. Illegitimate recombination leading to allelic loss and unbalanced translocation in p53-mutated human lymphoblastoid cells. Mol. Cell. Biology 17: 4774–4781, 1997.

    CAS  Google Scholar 

  80. Horii, A, Nakatsuru, S, Miyoshi, Y, Ichii, S, Nagase, H, Kato, Y, Yanagisawa, A, and Nakamura, Y: The APC gene, responsible for familial adenomatous polyposis, is mutated in human gastric cancer. Cancer Res., 52: 3231–3233, 1992.

    PubMed  CAS  Google Scholar 

  81. Hsieh, P, Camerini-Otero, CS, and Camerini-Otero, RD: Pairing of homologous DNA sequences by proteins: evidence of three-stranded DNA. Genes and Development, 4: 1951–1963, 1990.

    PubMed  CAS  Google Scholar 

  82. Ikeda, H: DNA topoisomerase-mediated illegitimate recombination. Adv. Pharmacol. 29A: 147, 1994.

    PubMed  CAS  Google Scholar 

  83. Jackson AL, Loeb LA: The mutation rate and cancer. Genetics, 148: 1483–1490, 1998.

    PubMed  CAS  Google Scholar 

  84. Karow, JK, Chakraverty, RK, and Hickson, ID: The Bloom’s syndrome gene product is a 3′–5′ DNA helicase. J. Biol. Chem., 272: 30611–30614, 1997.

    Google Scholar 

  85. Kastan, MB, Onyekwere, O, Sidransky, D, Vogelstein, B, Craig, RW: Participation of p53 protein in the cellular response to DNA damage. Cancer Res., 51: 6304–6311, 1991.

    PubMed  CAS  Google Scholar 

  86. Kastan, MB, Zhan, Q, El-Deiry, WS, Carrier, F, Jacks, T, Walsh, WV, Plunkett, BS, Vogelstein, B, and Fornace, Jr., AJ: A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell, 71: 587–597, 1992.

    PubMed  CAS  Google Scholar 

  87. Kawasaki, I, Bae, YS, Eki, T, Kim, Y, Ikeda, H: Homologous recombination of monkey α-satellite repeats in an in vitro simian virus 40 replication system: possible association of recombination with DNA replication. Mol. Cell. Biol., 14: 4173–4182, 1994.

    PubMed  CAS  Google Scholar 

  88. Khandjian, EW, Matter, JM, Leonhard, N, and Weil, R: Simian virus 40 and polyoma virus stimulate overall cellular RNA and protein synthesis. Proc. Natl. Acad. Sci. USA, 77: 1476–1481, 1980.

    PubMed  CAS  Google Scholar 

  89. Khanna, KK, and Lavin, MF: Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene, 8: 3307–3312, 1993.

    PubMed  CAS  Google Scholar 

  90. Khoobyarian, N and Marczynska, B: Cell immortalization: the role of viral genes and carcinogens. Virus Res., 30: 113–128, 1993.

    PubMed  CAS  Google Scholar 

  91. Kim, NW, Piatyszek, MA, Prowse, KR, Harley, CB, West, MD, Ho, PL, Coviello, GM, Wright, WE, Weinrich, SL, Shay, JW: Specific association of human telomerase activity with immortal cells and cancer. Science, 266: 2011–2015, 1994.

    PubMed  CAS  Google Scholar 

  92. Kogoma, T: Recombination by replication. Cell, 85: 625–627, 1996.

    PubMed  CAS  Google Scholar 

  93. Kogoma, T, Cadwell, GW, Barnard, KG, and Asai, T: The replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J. Bacter., 178: 1258–1264, 1996.

    CAS  Google Scholar 

  94. Kogoma, T: Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. Molec. Biol. Rev. 61: 212–238, 1997.

    CAS  Google Scholar 

  95. Kojis, TL, Schreck, RR, Gatti, RA, and Sparkes, RS: Tissue specificity of chromosomal rearrangements in Ataxia telangiectasia. Hum. Genet., 83: 347–352, 1989.

    PubMed  CAS  Google Scholar 

  96. Kojis, TL, Gatti, RA, and Sparkes, RS: The cytogenetics of Ataxia telangiectasia. Cancer Genet. Cytogenet., 56: 143–156, 1991.

    PubMed  CAS  Google Scholar 

  97. Kornberg, A, and Baker, T: DNA Replication, 2nd edition, 1992; W.H. Freeman & Co.

  98. Kruse, CA, Varella-Garcia, M, Kleinschmidt-Demasters, BK, Owens, GC, Spector, EB, Fakhrai H, Savelieva, E, Liang, BC: Receptor expression, cytogenetic, and molecular analysis of six continuous human glioma cell lines. In Vitro Cell. Devel. Biol. Animal. 34: 455–462, 1998.

    CAS  Google Scholar 

  99. Kuchta RD, and Willhelm, L: Inhibition of DNA primase by 9-beta-D-arabinofuranosyladenosine triphosphate. Biochemistry, 30: 797–803, 1991.

    PubMed  CAS  Google Scholar 

  100. Kuerbitz, SJ, Plunkett, BS, Walsh, WV, and Kastan, MB: Wild type p53 is a cell cycle check point determinant following irradiation. Proc. Natl. Acad. Sc. USA, 89: 7491–7495, 1992.

    CAS  Google Scholar 

  101. Lakshmi, MS, and Sherbet, GV: Genetic recombination in human melanoma and astrocytoma cell lines involves oncogenes and growth factor genes. Clin. Expl. Metastasis, 8: 75–87, 1990.

    CAS  Google Scholar 

  102. Larsen, CJ: The BCL2 gene, prototype of a gene family that controls programmed cell death (apoptosis). Annales de Genetique. 37: 121–134, 1994.

    PubMed  CAS  Google Scholar 

  103. Leder, P, Battey, J, Lenoir, G, Moulding, C, Murphy, W, Potter, H, Stewart, T, Taub, R: Translocations among antibody genes in human cancer. Science, 222: 765–771, 1983.

    PubMed  CAS  Google Scholar 

  104. Lee WC, and Testa JR: Somatic genetic alterations in human malignant mesothelioma. Int. J. Oncol. 14: 181–188, 1999.

    PubMed  CAS  Google Scholar 

  105. Lemaire, R, Flipo, RM., Monte, D, Dupressoir, T, Duquesnoy, B, Cesbron, JY, Janin, A, Capron, A, Lafyatis, R: Synovial fibroblast-like cell transfection with the SV40 large T antigen induces a transformed phenotype and permits transient tumor formation in immunodeficient mice. J. Rheumatol., 21: 1409–1419, 1994.

    PubMed  CAS  Google Scholar 

  106. Lengauer, C, Kinzler, KW, and Vogelstein, B: Genetic instabilities in colorectal cancers. Nature, 386: 623–627, 1997.

    PubMed  CAS  Google Scholar 

  107. Lengauer, C, Kinzler, KW, and Vogelstein, B: Genetic instabilities in human cancers. Nature, 396: 643–649 1998.

    PubMed  CAS  Google Scholar 

  108. Li, J, Ayyadevara, R, and Shmookler Reis, RJ: Carcinogens stimulate intrach romosomal homologous recombination at an endogenous locus in human diploid fibroblasts. Mutation Res., 385: 173–193, 1997.

    PubMed  CAS  Google Scholar 

  109. Liskay, RM, Letsou, A, and Stachelek, JL. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics, 115: 161–167, 1987.

    PubMed  CAS  Google Scholar 

  110. Liu, J, and Wolf, B: Co-existence of somatic hypermutation and gene conversion in hypervariable regions of single Ig kappa clones. Immunology, 95: 291–301, 1998.

    PubMed  CAS  Google Scholar 

  111. Loeb, LA: Transient expression of a mutator phenotype in cancer cells. Science, 277: 1449–1450, 1997.

    PubMed  CAS  Google Scholar 

  112. Loeb, LA: Cancercells exhibita mutator phenotype. Adv Cancer Res., 72: 25–56, 1998.

    PubMed  CAS  Google Scholar 

  113. Loft, S and Poulsen, HE: Cancer risk and oxidative DNA damage in man. J Molec Med, 74: 297–312, 1996.

    CAS  Google Scholar 

  114. Lu, X, Lane, DP: Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes. Cell, 75: 765–778, 1993.

    PubMed  CAS  Google Scholar 

  115. Luisi-Deluca, C, Porter, RD, and Taylor, WD: Stimulation of recombination between homologous sequences on plasmid DNA and chromosomal DNA in Escherichia coli by N-acetoxy-2-acetyl-aminofluorene. Proc. Natl. Acad. Sci. USA, 81: 2831–2835, 1984.

    PubMed  CAS  Google Scholar 

  116. Lynch, HT, and Lynch, JF: Genetics of colonic cancer. Digestion, 59: 481–492, 1998.

    PubMed  CAS  Google Scholar 

  117. Mansour SL, Thomas KR, and Capecchi MR: Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature, 336: 348–352, 1988.

    PubMed  CAS  Google Scholar 

  118. Mansour SL, Goddard JM, and Capecchi MR: Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development, 117: 13–28, 1993.

    PubMed  CAS  Google Scholar 

  119. Mason, JM, Langenbach, R, Shelby, MD, Zeiger, E, and Tennant, RW: Ability of short-term tests to predict carcinogenesis in rodents. Annu. Rev. Pharmacol. Toxicol., 30: 149–168, 1990.

    PubMed  CAS  Google Scholar 

  120. Mayne, LV, Priestley, A, James, MR, Burke, JF: Efficient immortalization and morphological transformation of human fibroblasts by transfection with SV40 DNA linked to a dominant marker. Exper. Cell Res., 162: 530–538, 1986.

    CAS  Google Scholar 

  121. Mekeel, KL, Tang, W, Kachnic, LA, Luo, CM, DeFrank, JS, and Powell, SN: Inactivation of p53 results in high rates of homologous recombination. Oncogene, 14: 1847–1857, 1997.

    PubMed  CAS  Google Scholar 

  122. Meselson, MS, and Radding, CM: A general model for genetic recombination. Proc. Natl. Acad. Sciences USA, 72: 358–361, 1975.

    CAS  Google Scholar 

  123. Meyn, MS: High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia. Science, 260: 1327–1330, 1993.

    PubMed  CAS  Google Scholar 

  124. Miki, H, Ohmori, M, Perantoni, AO, and Enomoto, T: K-ras activation in gastric epithelial tumors in japanese. Cancer Lett., 58: 107–113, 1991.

    PubMed  CAS  Google Scholar 

  125. Mills D: 8-hydroxyquinoline inhibition of DNA synthesis and intragenic recombination during yeast meiosis. Mol. and Gen. Genet. 162: 221–228, 1978.

    CAS  Google Scholar 

  126. Morgan, AR, and Severini, A: Interconversion of replication and recombination structures: Implications for terminal repeats and concatemers. J. Theor. Biol., 144: 195–202, 1990.

    PubMed  CAS  Google Scholar 

  127. Murakami, Y, and Hurwitz, J: Functional interactions between SV40 T antigen and other replication proteins at the replication fork. J. Biol. Chem., 268: 11008–11017, 1993.

    Google Scholar 

  128. Murakami, Y, and Hurwitz, J: DNA polymerase α stimulates the ATP-dependent binding of simian virus tumor T antigen to the SV40 origin of replication. J. Biol. Chem., 268: 11018–11027, 1993.

    Google Scholar 

  129. Nakamura, Y: ATM: the p53 booster. Nature Medicine, 4: 1231–1232, 1998.

    PubMed  CAS  Google Scholar 

  130. Nassif, N, and Engels, W: DNA homology requirements for mitotic gap repair in Drosophila. Proc. Natl. Acad. Sci. USA, 90: 1262–1266, 1993.

    PubMed  CAS  Google Scholar 

  131. Neiman, PE, and Hartwell, LH: Malignant instability. New Biologist, 3: 347–351, 1991.

    PubMed  CAS  Google Scholar 

  132. Nicolaides, NC, Papadopoulos, N, Liu, B, Wei, YF, Carter, KC, Ruben, SM, Rosen, CA, Haseltine, WA, Fleischmann, RD, Fraser, CM, et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature, 371: 75–80, 1994.

    PubMed  CAS  Google Scholar 

  133. Nikitin, AG, and Shmookler Reis, RJ: Role of transposable elements in age-related genomic instability. Genet. Res., Camb., 69: 183–195, 1997.

    CAS  Google Scholar 

  134. Oettinger, MA, Schatz, DA, Gorka, C, and Baltimore, D: RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science, 248: 1517–1523, 1990.

    PubMed  CAS  Google Scholar 

  135. Ogino, H, Nakabayashi, K, Suzuki, M, Takahashi, E, Fujii, M, Suzuki, T, and Ayusawa, D: Release of telomeric DNA from chromosomes in immortal human cells lacking telomerase activity. Bioch. Biophy. Res. Comm., 248: 223–227, 1998.

    CAS  Google Scholar 

  136. Orntoft TF, and Wolf H: Molecular alterations in bladder cancer. Urol. Res. 26: 223–233, 1998.

    PubMed  CAS  Google Scholar 

  137. Oshima, J, Steinmann, K, Campisi, J, and Schlegel, R: Modulation of cell growth, p34cdc2 and cyclin A levels by SV40 large T antigen. Oncogene 8: 2987–2993, 1993.

    PubMed  CAS  Google Scholar 

  138. Pathak, S, Dave, BJ, and Gagos, S: Chromosome alterations in cancer development and apoptosis. In Vivo, 8: 843–850, 1994.

    PubMed  CAS  Google Scholar 

  139. Phear, G, Bhattacharyya, NP, and Meuth, M. Loss of heterozygosity and base substitution at the APRT locus in mismatch-repair-proficient and-deficient colorectal carcinoma cells. Mol. Cell. Biol., 16: 6516–6523, 1996.

    PubMed  CAS  Google Scholar 

  140. Radman, M, Jeggo, P, and Wagner, R: Chromosomal rearrangement and carcinogenesis. Mut. Res., 98: 249–264, 1982.

    CAS  Google Scholar 

  141. Raju, NB: Meiosis and ascospore genesis in Neurospora. Eur. J. Cell Biol., 23: 208–223, 1980.

    PubMed  CAS  Google Scholar 

  142. Ray, FA, Peabody, DS, Cooper, JL, Cram, LS, and Kraemer, PM: SV40 T antigen alone drives karyotypic instability that precedes neoplastic transformation of human diploid fibroblasts. J. Cell. Biochem., 42: 13–31, 1990.

    PubMed  CAS  Google Scholar 

  143. Ray, S, Anderson, ME, Loeber, G, Mcvey, D, and Tegtmeyer, P: Functional characterization of temperature-sensitive mutants of simian virus 40 large T antigen. J. Virol., 66: 6509–6516, 1992.

    PubMed  CAS  Google Scholar 

  144. Ray, S, Anderson, ME, and Tegtmeyer, P: Differential interaction of temperature-sensitive SV40 T antigens with tumor suppressors pRb and p53. J. Virol., 70: 7224–7227, 1996.

    PubMed  CAS  Google Scholar 

  145. Razin, S, Pfendt, EA, Matsumura, T, and Hayflick, L: Comparison by autoradiography of macromolecular biosynthesis in “young” and “old” human diploid fibroblast cultures. Mech. Aging Dev., 6: 379–384, 1977.

    PubMed  CAS  Google Scholar 

  146. Resnick, MA, Skaanild, M, and Nilsson, TT: Lack of DNA homology in a pair of divergent chromosomes greatly sensitizes them to loss by DNA damage. Proc. Natl. Acad. Sci. USA, 86: 2276–2280, 1989.

    PubMed  CAS  Google Scholar 

  147. Richter, C, Park, JW, and Ames, BN: Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA, 85: 6465–6467, 1988.

    PubMed  CAS  Google Scholar 

  148. Roca, AI, and Cox, MM: The RecA protein: structure and function. Crit. Rev. Bioch. Mol. Biol., 25: 415–456, 1990.

    CAS  Google Scholar 

  149. Rubnitz J, and Subramani S: Extrachromosomal and chromosomal gene conversion in mammalian cells. Mol. Cell. Biol., 6: 1608–1614, 1986.

    PubMed  CAS  Google Scholar 

  150. Rubnitz J, and Subramani S: Correction of deletions in mammalian cells by gene conversion. Somat. Cell Mol. Genet., 13: 183–190, 1987.

    PubMed  CAS  Google Scholar 

  151. Sakano, H, Maki, R, Kurosawa, Y, Roeder, W, and Tonegawa, S: Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy chain genes. Nature, 286: 676–683, 1980.

    PubMed  CAS  Google Scholar 

  152. Savitsky, K, Bar-Shira, A, Gilad, S, Rotman, G, Ziv, Y, Vanagaite, L, Tagle, DA, Smith, S, Uziel, T, Sfez, S, Ashkenazi, M, Pecker, I, Frydman, M, Harnick, R, Patanjali, SR, Simmons, A, Clines, GA, Sartiel, A, Gatti, RA, Chessa, L, Sanal, O, Lavin, MF, Jaspers, NGJ, Taylor, MR, Arlett, CF, Miki, T, Weissman, SM, Lovett, M, Collins, FS, Shiloh, Y: A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science, 268: 1749–1753, 1995.

    PubMed  CAS  Google Scholar 

  153. Schiedner, G, Wessel, R, Scheffner, M, and Stahl, H: Renaturation and DNA looping promoted by the SV40 large tumor antigen. EMBO J., 9: 37–43, 1990.

    Google Scholar 

  154. Scully, R, Chen, J, Plug, A, Xiao, Y, Weaver, D, Feunteun, J, Ashley, T, and Livingston, DM: Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell, 88: 265–275, 1997.

    PubMed  CAS  Google Scholar 

  155. Sedivy, JM, and Sharp, PA: Positive genetic selection for gene disruption in mammalian cells by homologous recombination. Proc. Natl. Acad. Sci. USA, 86: 227–231, 1989.

    PubMed  CAS  Google Scholar 

  156. Sengstag, C: The role of mitotic recombination in carcinogenesis. Crit. Rev. Toxicol., 24: 323–353, 1994.

    PubMed  CAS  Google Scholar 

  157. Shammas, MA, Simmons, C, Corey, DR, and Shmookler Reis, RJ: Telomerase inhibition by peptide nucleic acids reverses “immortality” of transformed human cells. Oncogene (in press, 1999)

  158. Shay, JW, and Bacchetti, S: A survey of telomerase activity in human cancer. Euro. J. Cancer, 33: 787–791, 1997.

    CAS  Google Scholar 

  159. Shay, JW, and Wright, WE. Quantitation of the frequency of immortalization of normal human diploid fibroblasts by SV40 large T antigen. Exp. Cell Res. 184: 109–118, 1989.

    PubMed  CAS  Google Scholar 

  160. Shay, JW, and Wright, WE: The reactivation of telomerase activity in cancer progression. Trends in Genetics, 12: 129–131, 1996.

    PubMed  CAS  Google Scholar 

  161. Schiestl, RH, Gietz, RD, Mehta, RD, and Hastings, PJ: Carcinogens induce intrachromosomal recombination in yeast. Carcinogenesis, 10: 1445–1455, 1989.

    PubMed  CAS  Google Scholar 

  162. Shmookler Reis RJ, Goldstein S: Loss of reiterated DNA sequences during serial passage of human diploid fibroblasts. Cell, 21: 739–749, 1980.

    PubMed  CAS  Google Scholar 

  163. Smith, GP: Unequal crossover and the evolution of multigene families. Cold Spring Harbor Symposia on Quantitative Biology, 38: 507–513, 1974.

    PubMed  CAS  Google Scholar 

  164. Smith GP: Evolution of repeated DNA sequences by unequal crossover. Science, 191: 528–535, 1976.

    PubMed  CAS  Google Scholar 

  165. Smith GR: Hotspots of homologous recombination. Experientia, 234–241, 1994.

  166. Smith, S, de Lange, T: TRF1, a mammalian telomeric protein. Trends in Genetics. 13: 21–26, 1997.

    PubMed  CAS  Google Scholar 

  167. Solomon, E, Barrow, J, and Goddard, AD: Chromosome aberrations and cancer. Science, 254: 1153–1160, 1991.

    PubMed  CAS  Google Scholar 

  168. Srivastava, A, Norris, JS, Shmookler Reis, RJ, and Goldstein, S: c-Ha-ras-1 proto-oncogene amplification and overexpression during the limited replicative life span of normal human fibroblasts. J. Biol. Chem., 260: 6404–6409, 1985.

    PubMed  CAS  Google Scholar 

  169. Stewart, N, and Bacchetti, S: Expression of SV40 large T antigen, but not small t antigen, is required for the induction of chromosomal aberrations in transformed human cells. Virology 180: 49–57, 1991.

    Google Scholar 

  170. Stürzbecher, H-W, Donzelmnn, B, Henning, W, et al.: P53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J., 15: 1992–2002, 1996.

    PubMed  Google Scholar 

  171. Super HG, Strissel PL, Sobulo OM, Burian D, Reshmi SC, Roe B, Zeleznik-Le NJ, Diaz MO, Rowley JD: Identification of complex genomic breakpoint junctions in the t(9;11) MLL-AF9 fusion gene in acute leukemia. Genes Chromo. Cancer 20: 185–195, 1997.

    CAS  Google Scholar 

  172. Suzuki, H, Takahashi, T, Kuroishi, T, Suyama, M, Ariyoshi, Y, Takahashi, T, and Ueda, R: p53 mutations in non-small cell lung cancer in Japan: association between mutations and smoking. Cancer Res., 52: 734–736, 1992.

    PubMed  CAS  Google Scholar 

  173. Sweezy, MA, and Fishel, R: Multiple pathways leading to genomic instability and tumorigenesis. Ann. N. Y. Acad. Sci., 726: 165–177, 1994.

    PubMed  CAS  Google Scholar 

  174. Szostak, JW, Orr-Weaver, TL, Rothstein, RJ, and Stahl, FW: The double-strand-break repair model for recombination. Cell, 33: 25–35, 1983.

    PubMed  CAS  Google Scholar 

  175. Takita J, Hayashi Y, and Yokota J: Loss of heterozygosity in neuroblastomas — an overview. Eur J Cancer, 33: 1971–1973, 1997.

    PubMed  CAS  Google Scholar 

  176. Taylor, AF, Schultz, DW, Ponticelli, AS, Smith, GR: RecBC enzyme nicking at Chi sites during DNA unwinding: location and orientation-dependence of the cutting. Cell, 41: 153–163, 1985.

    PubMed  CAS  Google Scholar 

  177. Tegtmeyer, P: Function of simian virus 40 gene A in transforming infection. J. Virol., 15: 613–618, 1975.

    PubMed  CAS  Google Scholar 

  178. Tegtmeyer, P: Genetics of SV40 and polyoma virus. In: Molecular Biology of Tumor Viruses, Part 2: DNA Tumor Viruses (J. Tooze, ed.) Cold Spring Harbor Press, Cold Spring Harbor, NY. pp. 7–337, 1980.

    Google Scholar 

  179. Tlsty, TD: Normal diploid human and rodent cells lack a detectable frequency of gene amplification. Proc. Natl. Acad. Sci., 87: 3123–3136, 1990.

    Google Scholar 

  180. Tsancheva, M: The molecular biology and genetics of colorectal carcinoma. Khirurgiia, 50: 40–44, 1997.

    PubMed  CAS  Google Scholar 

  181. Tsuji, Y, Ide, T, and Ishibashi, S: Correlation between the presence of T-antigen and the reinitiation of host DNA synthesis in senescent human diploid fibroblasts after SV40 infection. Exp. Cell Res., 144: 165–169, 1983.

    PubMed  CAS  Google Scholar 

  182. van Gool, AJ, Verhage, R, Swagemakers, SM, van de Putte, P, Brouwer, J, Troelstra, C, Bootsma, D, and Hoeijmakers, JH: RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J., 13: 5361–5369, 1994.

    PubMed  Google Scholar 

  183. van Steensel, B, and de Lange, T: Control of telomere length by the human telomeric protein TRF1. Nature, 385: 740–743, 1997.

    PubMed  Google Scholar 

  184. van Steensel, B, Smororzewska, A, and de Lange, T: TRF2 protects human telomeres from end-to-end fusions. Cell, 92: 401–413, 1998.

    PubMed  Google Scholar 

  185. Vogelstein, B, Fearon, ER, Kern, SE, Hamilton, SR, Preisinger, AC, Nakamura, Y, White, R: Allelotype of colorectal carcinomas. Science, 244: 207–211, 1989.

    PubMed  CAS  Google Scholar 

  186. Voloshin, ON, Wang, L, Camerini-Otero, RD: Homologous DNA pairing promoted by a 20-amino acid peptide derived from RecA. Science, 272: 868–872, 1996.

    PubMed  CAS  Google Scholar 

  187. Wake, CT, Gudewicz, T, Porter, T, White, A, Wilson, JH: How damaged is the biologically active subpopulation of transfected DNA? Mol. Cell. Biol., 4: 387–398, 1984.

    PubMed  CAS  Google Scholar 

  188. Waldman, BC, and Waldman, AS: Illegitimate and homologous recombination in mammalian cells: differential sensitivity to an inhibitor of poly(ADP-ribosylation). Nuc. Acids Res., 18: 5981–5988, 1990.

    CAS  Google Scholar 

  189. Wang, SS, and Zakian, VA: Telomere-telomere recombination provides an express pathway for telomere acquisition. Nature, 345: 456–458, 1990.

    PubMed  CAS  Google Scholar 

  190. Weinberg RA.: The genetic origins of human cancer. Cancer. 61: 1963–1968, 1988.

    PubMed  CAS  Google Scholar 

  191. Weinberg RA.: The molecular basis of oncogenes and tumor suppressor genes. Ann N Y Acad Sci., 758: 331–338, 1995.

    PubMed  CAS  Google Scholar 

  192. West, SC: The processing of recombination intermediates: mechanistic insights from studies of bacterial proteins. Cell, 76: 9–15, 1994.

    PubMed  CAS  Google Scholar 

  193. Whelden, Cho, J, Khalsa, GJ, Nickoloff, JA: Gene-conversion tract directionality is influenced by the chromosome environment. Curr. Genet., 34: 269–279, 1998.

    Google Scholar 

  194. Wichman, HA, Van Den Bussche, RA, Hamilton, MJ, Baker, RJ: Transposable elements and the evolution of genome organization in mammals. Genetica, 86: 287–293, 1992.

    PubMed  CAS  Google Scholar 

  195. Wiener F, Klein G, Harris H: Tumorigenicity of L cell derivatives and hybrid cells derived from them. Cancer Lett. Mar., 1: 207–210, 1976.

    CAS  Google Scholar 

  196. Windle, B, Draper, BW, Yin, YX, O’Gorman, S, Wahl, GM: A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. Genes & Development, 5: 160–174, 1991.

    CAS  Google Scholar 

  197. Wong, EA, and Capecchi, MR: Homologous recombination between coinjected DNA sequences peaks in early to mid-S phase. Mol. Cell. Biol., 7: 2294–2295, 1987.

    PubMed  CAS  Google Scholar 

  198. Wright, WE, Pereira, Smith, OM, and Shay, JW: Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol. Cell Biol., 9: 3088–3092, 1989.

    PubMed  CAS  Google Scholar 

  199. Wright, WE, and Shay, JW: The two-stage mechanism controlling cellular senescence and immortalization. Exper. Gerontol., 27: 383–389, 1992.

    CAS  Google Scholar 

  200. Xia, SJ, Shammas, MA, and Shmookler Reis, RJ: Reduced telomere length in ataxia-telangiectasia fibroblasts. Mutat. Res., 364: 1–11, 1996.

    PubMed  CAS  Google Scholar 

  201. Xia, S, Shammas, MA, Shmookler Reis, RJ: Elevated recombination in immortal human cells is mediated by HsRAD51 recombinase. Mol. Cell. Biol., 17: 7151–7158, 1997.

    PubMed  CAS  Google Scholar 

  202. Xiong, Y, Zhang, H, and Beach, D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev., 7: 1572–1583, 1993.

    PubMed  CAS  Google Scholar 

  203. Xiong, Y, Hannon, GJ, Zhang, H, Casso, D, Kobayashi, R, and Beach, D: p21 is a universal inhibitor of cyclin kinases. Nature, 366: 701–704, 1993.

    PubMed  CAS  Google Scholar 

  204. Yamada, Y, Yoshida, T, Hayashi, K, Sekiya, T, Yokota, J, Hirohashi, S, Nakatani, K, Nakano, H, Sugimura, T, Terada M: p53 gene mutations in gastric cancer metastases and in gastric cancer cell lines derived from metastases. Cancer Res., 51: 5800–5805, 1991.

    PubMed  CAS  Google Scholar 

  205. Yamaguchi-Iwai, Y, Sonoda, E, Buerstedde, JM, Bezzubova, O, Morrison, C, Takata, M, Shinohara, A, Takeda S: Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52. Mol. Cell. Biol., 18: 6430–6435, 1998.

    PubMed  CAS  Google Scholar 

  206. Yoshimura, Y, Morita, T, Yamamoto, A, Matsushiro, A: Cloning and sequence of the human RecA like gene cDNA. Nucleic Acids Res., 21: 1665, 1993.

    PubMed  CAS  Google Scholar 

  207. Yunis, JJ: Multiple recurrent genomic rearrangements and fragile sites in human cancer. Somat. Cell Molec. Genet., 13: 397–403, 1987.

    PubMed  CAS  Google Scholar 

  208. Yusof, YA, and Edwards, AM: Stimulation of DNA synthesis in primary rat hepatocyte cultures by liver tumor promoters: interactions with other growth factors. Carcinogenesis, 11: 761–770, 1990.

    PubMed  CAS  Google Scholar 

  209. Zakian, VA: Structure and function of telomeres. Annu. Rev. Genet., 23: 579–604, 1989.

    PubMed  CAS  Google Scholar 

  210. Zhan, Q, Fan, S, Bae, I, Guillouf, C, Liebermann, DA, O’Connor, PM, Fornace, AJ, Jr.: Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. Oncogene, 9: 3743–3751, 1994.

    PubMed  CAS  Google Scholar 

  211. Zhang, LH, Jenssen, D: Studies on intrachromosomal recombination in SP5/V79 Chinese hamster ceils upon exposure to different agents related to carcinogenesis. Carcinogenesis, 15: 2303–2310, 1994.

    PubMed  CAS  Google Scholar 

  212. Zhu, J, Abate, M, Rice, PW, and Cole, CN: The ability of simian virus 40 large T antigen to immortalize primary mouse embryo fibroblasts cosegregates with its ability to bind p53. J. Virol., 65: 6872–6880, 1991.

    PubMed  CAS  Google Scholar 

  213. Zucman-Rossi J, Legoix P, Victor JM, Lopez B, Thomas G: Chromosome translocation based on illegitimate recombination in human tumors. Proc Natl Acad Sci USA, 95: 11786–11791, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Shmookler Reis.

About this article

Cite this article

Shammas, M.A., Shmookler Reis, R.J. Recombination and its roles in DNA repair, cellular immortalization and cancer. AGE 22, 71–88 (1999). https://doi.org/10.1007/s11357-999-0009-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-999-0009-0

Keywords

Navigation