Skip to main content

Advertisement

Log in

Neuronavigated Magnetic Stimulation combined with cognitive training for Alzheimer’s patients: an EEG graph study

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disorder in elderly subjects. Recent studies verified the effects of cognitive training combined with repetitive transcranial magnetic stimulation (rTMS-COG) in AD patients. Here, we analyzed neuropsychological and neurophysiological data, derived from electroencephalography (EEG), to evaluate the effects of a 6-week protocol of rTMS-COG in 72 AD. We designed a randomized, double-blind, sham-controlled trial to evaluate efficacy of rTMS on 6 brain regions obtained by an individual MRI combined with COG related to brain areas to stimulate (i.e., syntax and grammar tasks, comprehension of lexical meaning and categorization tasks, action naming, object naming, spatial memory, spatial attention). Patients underwent neuropsychological and EEG examination before (T0), after treatment (T1), and after 40 weeks (T2), to evaluate the effects of rehabilitation therapy. “Small World” (SW) graph approach was introduced allowing us to model the architecture of brain connectivity in order to correlate it with cognitive improvements. We found that following 6 weeks of intensive daily treatment the immediate results showed an improvement in cognitive scales among AD patients. SW present no differences before and after the treatment, whereas a crucial SW modulation emerges at 40-week follow-up, emphasizing the importance of rTMS-COG rehabilitation treatment for AD. Additional results demonstrated that the delta and alpha1 SW seem to be diagnostic biomarkers of AD, whereas alpha2 SW might represent a prognostic biomarker of cognitive recovery. Derived EEG parameters can be awarded the role of diagnostic and predictive biomarkers of AD progression, and rTMS-COG can be regarded as a potentially useful treatment for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Fargo KN, Aisen P, Albert M, Au R, Corrada MM, DeKosky S, et al. 2014 Report on the Milestones for the US National Plan to Address Alzheimer’s Disease. Alzheimers Dement. 2014;10(5 Suppl):S430–52.

    PubMed  Google Scholar 

  2. Trebbastoni A, Imbriano L, Podda L, Rendace L, Sacchetti ML, Campanelli A, et al. Cognitive Training in Patients with Alzheimer’s Disease: Findings of a 12-month Randomized Controlled Trial. Curr Alzheimer Res. 2018;15(5):452–61.

    Article  CAS  PubMed  Google Scholar 

  3. Bahar-Fuchs A, Clare L, Woods B. Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer's disease and vascular dementia. Cochrane Database Syst Rev. 2013(6):CD003260.

  4. Kallio EL, Öhman H, Kautiainen H, Hietanen M, Pitkälä K. Cognitive Training Interventions for Patients with Alzheimer’s Disease: A Systematic Review. J Alzheimers Dis. 2017;56(4):1349–72.

    Article  PubMed  Google Scholar 

  5. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2(3):145–56.

    Article  PubMed  Google Scholar 

  6. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Group SoTC. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weiler M, Stieger KC, Long JM, Rapp PR. Transcranial Magnetic Stimulation in Alzheimer's Disease: Are We Ready? eNeuro. 2020;7(1)

  9. Cotelli M, Manenti R, Cappa SF, Geroldi C, Zanetti O, Rossini PM, et al. Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Arch Neurol. 2006;63(11):1602–4.

    Article  PubMed  Google Scholar 

  10. Cotelli M, Manenti R, Rosini S, Calabria M, Brambilla M, Bisiacchi PS, et al. Action and Object Naming in Physiological Aging: An rTMS Study. Front Aging Neurosci. 2010;2:151.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee J, Choi BH, Oh E, Sohn EH, Lee AY. Treatment of Alzheimer’s Disease with Repetitive Transcranial Magnetic Stimulation Combined with Cognitive Training: A Prospective, Randomized, Double-Blind Placebo-Controlled Study. J Clin Neurol. 2016;12(1):57–64.

    Article  PubMed  Google Scholar 

  12. Brem AK, Di Iorio R, Fried PJ, Oliveira-Maia AJ, Marra C, Profice P, et al. Corticomotor Plasticity Predicts Clinical Efficacy of Combined Neuromodulation and Cognitive Training in Alzheimer’s Disease. Front Aging Neurosci. 2020;12:200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vecchio F, Babiloni C, Lizio R, FallaniFde V, Blinowska K, Verrienti G, et al. Resting state cortical EEG rhythms in Alzheimer’s disease: toward EEG markers for clinical applications: a review. Suppl Clin Neurophysiol. 2013;62:223–36.

    Article  PubMed  Google Scholar 

  14. Jelic V, Shigeta M, Julin P, Almkvist O, Winblad B, Wahlund LO. Quantitative electroencephalography power and coherence in Alzheimer’s disease and mild cognitive impairment. Dementia. 1996;7(6):314–23.

    CAS  PubMed  Google Scholar 

  15. Rossini PM, Di Iorio R, Vecchio F, Anfossi M, Babiloni C, Bozzali M, et al. Early diagnosis of Alzheimer’s disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts. Clin Neurophysiol. 2020;131(6):1287–310.

    Article  CAS  PubMed  Google Scholar 

  16. Vecchio F, Miraglia F, Marra C, Quaranta D, Vita MG, Bramanti P, et al. Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data. J Alzheimers Dis. 2014;41(1):113–27.

    Article  PubMed  Google Scholar 

  17. Vecchio F, Miraglia F, Quaranta D, Granata G, Romanello R, Marra C, et al. Cortical connectivity and memory performance in cognitive decline: A study via graph theory from EEG data. Neuroscience. 2016;316:143–50.

    Article  CAS  PubMed  Google Scholar 

  18. Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys. 2007;1(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  19. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–44.

    Article  CAS  PubMed  Google Scholar 

  20. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Screening questionnaire before TMS: an update. Clin Neurophysiol. 2011;122(8):1686.

    Article  PubMed  Google Scholar 

  22. Miraglia F, Vecchio F, Bramanti P, Rossini PM. Small-worldness characteristics and its gender relation in specific hemispheric networks. Neuroscience. 2015;310:1–11.

    Article  CAS  PubMed  Google Scholar 

  23. Miraglia F, Vecchio F, Rossini PM. Searching for signs of aging and dementia in EEG through network analysis. Behav Brain Res. 2017;317:292–300.

    Article  PubMed  Google Scholar 

  24. Vecchio F, Miraglia F, Judica E, Cotelli M, Alù F, Rossini PM. Human brain networks: a graph theoretical analysis of cortical connectivity normative database from EEG data in healthy elderly subjects. Geroscience. 2020.

  25. Miraglia F, Tomino C, Vecchio F, Alù F, Orticoni A, Judica E, et al. Assessing the dependence of the number of EEG channels in the brain networks' modulations. Brain Res Bull. 2020.

  26. Vecchio F, Tomino C, Miraglia F, Iodice F, Erra C, Di Iorio R, et al. Cortical connectivity from EEG data in acute stroke: A study via graph theory as a potential biomarker for functional recovery. Int J Psychophysiol. 2019;146:133–8.

    Article  PubMed  Google Scholar 

  27. Hoffmann S, Falkenstein M. The correction of eye blink artefacts in the EEG: a comparison of two prominent methods. PLoS One. 2008;3(8):e3004.

  28. Iriarte J, Urrestarazu E, Valencia M, Alegre M, Malanda A, Viteri C, et al. Independent component analysis as a tool to eliminate artifacts in EEG: a quantitative study. J Clin Neurophysiol. 2003;20(4):249–57.

    Article  PubMed  Google Scholar 

  29. Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B, et al. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans A Math Phys Eng Sci. 1952;2011(369):3768–84.

    Google Scholar 

  30. Babiloni C, Cassetta E, Binetti G, Tombini M, Del Percio C, Ferreri F, et al. Resting EEG sources correlate with attentional span in mild cognitive impairment and Alzheimer’s disease. Eur J Neurosci. 2007;25(12):3742–57.

    Article  PubMed  Google Scholar 

  31. Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D. Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol. 2002;24(Suppl C):91–5.

    PubMed  Google Scholar 

  32. Kubicki S, Herrmann WM, Fichte K, Freund G. Reflections on the topics: EEG frequency bands and regulation of vigilance. Pharmakopsychiatr Neuropsychopharmakol. 1979;12(2):237–45.

    Article  CAS  PubMed  Google Scholar 

  33. Lehmann D, Faber PL, Tei S, Pascual-Marqui RD, Milz P, Kochi K. Reduced functional connectivity between cortical sources in five meditation traditions detected with lagged coherence using EEG tomography. Neuroimage. 2012;60(2):1574–86.

    Article  PubMed  Google Scholar 

  34. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol. 2004;115(10):2292–307.

    Article  PubMed  Google Scholar 

  35. Pascual-Marqui RD. Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. eprint arXiv:07111455.

  36. Miraglia F, Vecchio F, Bramanti P, Rossini PM. EEG characteristics in “eyes-open” versus “eyes-closed” conditions: Small-world network architecture in healthy aging and age-related brain degeneration. Clin Neurophysiol. 2016;127(2):1261–8.

    Article  PubMed  Google Scholar 

  37. Vecchio F, Miraglia F, Bramanti P, Rossini PM. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data. J Alzheimers Dis. 2014;41(4):1239–49.

    Article  PubMed  Google Scholar 

  38. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–69.

    Article  PubMed  Google Scholar 

  39. Vecchio F, Miraglia F, Iberite F, Lacidogna G, Guglielmi V, Marra C, et al. Sustainable method for Alzheimer dementia prediction in mild cognitive impairment: Electroencephalographic connectivity and graph theory combined with apolipoprotein E. Ann Neurol. 2018;84(2):302–14.

    Article  CAS  PubMed  Google Scholar 

  40. Zar JH. Biostatistical analysis. 2nd Edition ed. Englewood Cliffs: Prentice-Hall. 1984. p. 718.

  41. D’Amelio M, Rossini PM. Brain excitability and connectivity of neuronal assemblies in Alzheimer’s disease: from animal models to human findings. Prog Neurobiol. 2012;99(1):42–60.

    Article  PubMed  Google Scholar 

  42. Racz FS, Mukli P, Nagy Z, Eke A. Multifractal dynamics of resting-state functional connectivity in the prefrontal cortex. Physiol Meas. 2018;39(2):024003.

    Article  PubMed  Google Scholar 

  43. Friston KaBC. Functional connectivity. 2007;12: 492–507.

  44. Vecchio F, Miraglia F, Curcio G, Altavilla R, Scrascia F, Giambattistelli F, et al. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data. J Alzheimers Dis. 2015;45(3):745–56.

    Article  PubMed  Google Scholar 

  45. Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 2014;15(10):683–95.

    Article  CAS  PubMed  Google Scholar 

  46. Kueper JK, Speechley M, Montero-Odasso M. The Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog): Modifications and Responsiveness in Pre-Dementia Populations. A Narrative Review J Alzheimers Dis. 2018;63(2):423–44.

    Article  PubMed  Google Scholar 

  47. Ito K, Corrigan B, Zhao Q, French J, Miller R, Soares H, et al. Disease progression model for cognitive deterioration from Alzheimer’s Disease Neuroimaging Initiative database. Alzheimers Dement. 2011;7(2):151–60.

    Article  PubMed  Google Scholar 

  48. Stam CJ. Characterization of anatomical and functional connectivity in the brain: a complex networks perspective. Int J Psychophysiol. 2010;77(3):186–94.

    Article  CAS  PubMed  Google Scholar 

  49. Liao X, Vasilakos AV, He Y. Small-world human brain networks: Perspectives and challenges. Neurosci Biobehav Rev. 2017;77:286–300.

    Article  PubMed  Google Scholar 

  50. Vecchio F, Miraglia F, Quaranta D, Lacidogna G, Marra C, Rossini PM. Learning Processes and Brain Connectivity in A Cognitive-Motor Task in Neurodegeneration: Evidence from EEG Network Analysis. J Alzheimers Dis. 2018;66(2):471–81.

    Article  CAS  PubMed  Google Scholar 

  51. Reijneveld JC, Ponten SC, Berendse HW, Stam CJ. The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol. 2007;118(11):2317–31.

    Article  PubMed  Google Scholar 

  52. Miraglia F, Vecchio F, Marra C, Quaranta D, Alù F, Peroni B, et al. Small World Index in Default Mode Network Predicts Progression from Mild Cognitive Impairment to Dementia. Int J Neural Syst. 2020;30(2):2050004.

    Article  PubMed  Google Scholar 

  53. Vecchio F, Miraglia F, Piludu F, Granata G, Romanello R, Caulo M, et al. “Small World” architecture in brain connectivity and hippocampal volume in Alzheimer’s disease: a study via graph theory from EEG data. Brain Imaging Behav. 2017;11(2):473–85.

    Article  PubMed  Google Scholar 

  54. Koch G, Martorana A, Caltagirone C. Transcranial magnetic stimulation: Emerging biomarkers and novel therapeutics in Alzheimer's disease. Neurosci Lett. 2020;719:134355.

  55. Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology. 2013;64:566–78.

    Article  CAS  PubMed  Google Scholar 

  56. Cotelli M, Calabria M, Manenti R, Rosini S, Zanetti O, Cappa SF, et al. Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry. 2011;82(7):794–7.

    Article  PubMed  Google Scholar 

  57. Cotelli M, Adenzato M, Cantoni V, Manenti R, Alberici A, Enrici I, et al. Enhancing theory of mind in behavioural variant frontotemporal dementia with transcranial direct current stimulation. Cogn Affect Behav Neurosci. 2018;18(6):1065–75.

    Article  PubMed  Google Scholar 

  58. Devi G, Voss HU, Levine D, Abrassart D, Heier L, Halper J, et al. Open-label, short-term, repetitive transcranial magnetic stimulation in patients with Alzheimer’s disease with functional imaging correlates and literature review. Am J Alzheimers Dis Other Demen. 2014;29(3):248–55.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Italian Ministry of Health for Institutional Research (Ricerca corrente) and for the project “NEUROMASTER: NEUROnavigated MAgnetic STimulation in patients with mild-moderate Alzheimer disease combined with Effective cognitive Rehabilitation” (GR-2013- 510 02358430) and by Toto Holding. The authors are also grateful to the Merck Sharp & Dohme (MSD) for the sponsorship.

Author information

Authors and Affiliations

Authors

Contributions

FV contributed to conceptualization, methodology, writing—original draft preparation; DQ and FM helped in supervision, writing—reviewing and editing; CP, RD, FL, MC, and CM were involved in methodology data curation, writing—reviewing and editing; PMR wrote and edited the review.

Corresponding author

Correspondence to Fabrizio Vecchio.

Ethics declarations

Conflicts of interest

None of the authors have potential conflicts of interest to be disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vecchio, F., Quaranta, D., Miraglia, F. et al. Neuronavigated Magnetic Stimulation combined with cognitive training for Alzheimer’s patients: an EEG graph study. GeroScience 44, 159–172 (2022). https://doi.org/10.1007/s11357-021-00508-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00508-w

Keywords

Navigation