Skip to main content

Advertisement

Log in

San Antonio Nathan Shock Center: your one-stop shop for aging research

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

With evolving cores, enrichment and training programs, and supported research projects, the San Antonio (SA) Nathan Shock Center has for 26 years provided critical support to investigators locally, nationally, and abroad. With its existing and growing intellectual capital, the SA Nathan Shock Center provides to local and external investigators an enhanced platform to conduct horizontally integrated (lifespan, healthspan, pathology, pharmacology) transformative research in the biology of aging, and serves as a springboard for advanced educational and training activities in aging research. The SA Nathan Shock Center consists of six cores: Administrative/Program Enrichment Core, Research Development Core, Aging Animal Models and Longevity Assessment Core, Pathology Core, Analytical Pharmacology and Drug Evaluation Core, and Integrated Physiology of Aging Core. The overarching goal of the SA Nathan Shock Center is to advance knowledge in the basic biology of aging and to identify molecular and cellular mechanisms that will facilitate the development of pharmacologic interventions and other strategies to extend healthy lifespan. In pursuit of this goal, we provide an innovative “one-stop shop” venue to accelerate transformative research in the biology of aging through our integrated research cores. Moreover, we aim to foster and promote career development of early-stage investigators in aging biology through our research development programs, to serve as a resource and partner to investigators from other Shock Centers, and to disseminate scientific knowledge and enhanced awareness about aging research. Overall, the SA Nathan Shock Center aims to be a leader in research that advances our understanding of the biology of aging and development of approaches to improve longevity and healthy aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709–13. https://doi.org/10.1016/j.cell.2014.10.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gelfond J, Goros M, Hernandez B, Bokov A. A system for an accountable data analysis process in R. R J. 2018;10(1):6–21.

    Article  Google Scholar 

  3. Cheng CJ, Gelfond JAL, Strong R, Nelson JF. Genetically heterogeneous mice exhibit a female survival advantage that is age- and site-specific: results from a large multi-site study. Aging Cell. 2019;18(3): e12905. https://doi.org/10.1111/acel.12905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang Y, Bokov A, Gelfond J, Soto V, Ikeno Y, Hubbard G, et al. Rapamycin extends life and health in C57BL/6 mice. J Gerontol A Biol Sci Med Sci. 2014;69(2):119–30. https://doi.org/10.1093/gerona/glt056.

    Article  CAS  PubMed  Google Scholar 

  5. Ikeno Y, Hubbard GB, Lee S, Richardson A, Strong R, Diaz V, et al. Housing density does not influence the longevity effect of calorie restriction. J Gerontol A Biol Sci Med Sci. 2005;60(12):1510–7. https://doi.org/10.1093/gerona/60.12.1510.

    Article  PubMed  Google Scholar 

  6. McCarter R, Mejia W, Ikeno Y, Monnier V, Kewitt K, Gibbs M, et al. Plasma glucose and the action of calorie restriction on aging. J Gerontol A Biol Sci Med Sci. 2007;62(10):1059–70. https://doi.org/10.1093/gerona/62.10.1059.

    Article  PubMed  Google Scholar 

  7. Yuan R, Tsaih SW, Petkova SB, Marin de Evsikova C, Xing S, Marion MA, et al. Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell. 2009;8(3):277–87. https://doi.org/10.1111/j.1474-9726.2009.00478.x.

    Article  CAS  PubMed  Google Scholar 

  8. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56. https://doi.org/10.1038/s41591-018-0092-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mitchell SJ, Madrigal-Matute J, Scheibye-Knudsen M, Fang E, Aon M, Gonzalez-Reyes JA, et al. Effects of sex, strain, and energy intake on hallmarks of aging in mice. Cell Metab. 2016;23(6):1093–112. https://doi.org/10.1016/j.cmet.2016.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J, et al. Reduced expression of MYC increases longevity and enhances healthspan. Cell. 2015;160(3):477–88. https://doi.org/10.1016/j.cell.2014.12.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cunningham GM, Flores LC, Roman MG, Cheng C, Dube S, Allen C, et al. Thioredoxin overexpression in both the cytosol and mitochondria accelerates age-related disease and shortens lifespan in male C57BL/6 mice. Geroscience. 2018;40(5–6):453–68. https://doi.org/10.1007/s11357-018-0039-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Strong R, Miller RA, Antebi A, Astle CM, Bogue M, Denzel MS, et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an alpha-glucosidase inhibitor or a Nrf2-inducer. Aging Cell. 2016;15(5):872–84. https://doi.org/10.1111/acel.12496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strong R, Miller RA, Bogue M, Fernandez E, Javors MA, Libert S, et al. Rapamycin-mediated mouse lifespan extension: late-life dosage regimes with sex-specific effects. Aging Cell. 2020;19(11): e13269. https://doi.org/10.1111/acel.13269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fernandez E, Ross C, Liang H, Javors M, Tardif S, Salmon AB. Evaluation of the pharmacokinetics of metformin and acarbose in the common marmoset. Pathobiol Aging Age Relat Dis. 2019;9(1):1657756. https://doi.org/10.1080/20010001.2019.1657756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sills AM, Artavia JM, DeRosa BD, Ross CN, Salmon AB. Long-term treatment with the mTOR inhibitor rapamycin has minor effect on clinical laboratory markers in middle-aged marmosets. Am J Primatol. 2019;81(2): e22927. https://doi.org/10.1002/ajp.22927.

    Article  CAS  PubMed  Google Scholar 

  16. Parihar M, Dodds SG, Javors M, Strong R, Hasty P, Sharp ZD. Sex-dependent lifespan extension of Apc (Min/+) FAP mice by chronic mTOR inhibition. Aging Pathobiol Ther. 2020;2(4):187–94. https://doi.org/10.31491/apt.2020.12.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dodds SG, Parihar M, Javors M, Nie J, Musi N, Dave Sharp Z, et al. Acarbose improved survival for Apc(+/Min) mice. Aging Cell. 2020;19(2): e13088. https://doi.org/10.1111/acel.13088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Skike CE, Lin AL, Roberts Burbank R, Halloran JJ, Hernandez SF, Cuvillier J, et al. mTOR drives cerebrovascular, synaptic, and cognitive dysfunction in normative aging. Aging Cell. 2020;19(1): e13057. https://doi.org/10.1111/acel.13057.

    Article  CAS  PubMed  Google Scholar 

  19. Burch JB, Augustine AD, Frieden LA, Hadley E, Howcroft TK, Johnson R, et al. Advances in geroscience: impact on healthspan and chronic disease. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S1-3. https://doi.org/10.1093/gerona/glu041.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018;17(6): e12840. https://doi.org/10.1111/acel.12840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deng Y, Qin Y, Srikantan S, Luo A, Cheng ZM, Flores SK, et al. The TMEM127 human tumor suppressor is a component of the mTORC1 lysosomal nutrient-sensing complex. Hum Mol Genet. 2018;27(10):1794–808. https://doi.org/10.1093/hmg/ddy095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Skike CE, Jahrling JB, Olson AB, Sayre NL, Hussong SA, Ungvari Z, et al. Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer’s disease and vascular cognitive impairment. Am J Physiol Heart Circ Physiol. 2018;314(4):H693–703. https://doi.org/10.1152/ajpheart.00570.2017.

    Article  CAS  PubMed  Google Scholar 

  23. Song C, Zhang J, Qi S, Liu Z, Zhang X, Zheng Y, et al. Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson’s diseases. Aging Cell. 2019;18(3): e12941. https://doi.org/10.1111/acel.12941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Valentine JM, Li ME, Shoelson SE, Zhang N, Reddick RL, Musi N. NFkappaB regulates muscle development and mitochondrial function. J Gerontol A Biol Sci Med Sci. 2020;75(4):647–53. https://doi.org/10.1093/gerona/gly262.

    Article  CAS  PubMed  Google Scholar 

  25. Meng W, Liang X, Chen H, Luo H, Bai J, Li G, et al. Rheb inhibits beiging of white adipose tissue via PDE4D5-dependent downregulation of the cAMP-PKA signaling pathway. Diabetes. 2017;66(5):1198–213. https://doi.org/10.2337/db16-0886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen X, Ayala I, Shannon C, Fourcaudot M, Acharya NK, Jenkinson CP, et al. The diabetes gene and Wnt pathway effector TCF7L2 regulates adipocyte development and function. Diabetes. 2018;67(4):554–68. https://doi.org/10.2337/db17-0318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ross C, Salmon A, Strong R, Fernandez E, Javors M, Richardson A, et al. Metabolic consequences of long-term rapamycin exposure on common marmoset monkeys (Callithrix jacchus). Aging (Albany NY). 2015;7(11):964–73. https://doi.org/10.18632/aging.100843.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank all staff members of the San Antonio Nathan Shock Center for the efforts towards the success of the center. We also wish to thank Hanyu (Maggie) Liang for her valuable administrative assistance.

Funding

This work was funded in part by the parent grant of the San Antonio Nathan Shock Center, P30 AG013319. RS is supported by a Senior Research Career Scientist Award from the Department of Veterans Affairs Office of Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy Strong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmon, A.B., Nelson, J.F., Gelfond, J.A.L. et al. San Antonio Nathan Shock Center: your one-stop shop for aging research. GeroScience 43, 2105–2118 (2021). https://doi.org/10.1007/s11357-021-00417-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00417-y

Keywords

Navigation