Skip to main content
Log in

p62/SQSTM1 at the interface of aging, autophagy, and disease

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Advanced age is characterized by increased incidence of many chronic, noninfectious diseases that impair the quality of living of the elderly and pose a major burden on the healthcare systems of developed countries. These diseases are characterized by impaired or altered function at the tissue and cellular level, which is a hallmark of the aging process. Age-related impairments are likely due to loss of homeostasis at the cellular level, which leads to the accumulation of dysfunctional organelles and damaged macromolecules, such as proteins, lipids, and nucleic acids. Intriguingly, aging and age-related diseases can be delayed by modulating nutrient signaling pathways converging on the target of rapamycin (TOR) kinase, either by genetic or dietary intervention. TOR signaling influences aging through several potential mechanisms, such as autophagy, a degradation pathway that clears the dysfunctional organelles and damaged macromolecules that accumulate with aging. Autophagy substrates are targeted for degradation by associating with p62/SQSTM1, a multidomain protein that interacts with the autophagy machinery. p62/SQSTM1 is involved in several cellular processes, and its loss has been linked to accelerated aging and to age-related pathologies. In this review, we describe p62/SQSTM1, its role in autophagy and in signaling pathways, and its emerging role in aging and age-associated pathologies. Finally, we propose p62/SQSTM1 as a novel target for aging studies and age-extending interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adam T, Opie LH, Essop MF (2010) AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: role of nuclear respiratory factor-1. Biochem Biophys Res Commun 398(3):495–499

    CAS  PubMed  Google Scholar 

  • Alcorta DA et al (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A 93(24):13742–13747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alvers A et al (2009) Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 5(6):847–849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anello M et al (2005) Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia 48(2):282–289

    CAS  PubMed  Google Scholar 

  • Askanas V, Engel W (2002) Inclusion-body myositis and myopathies: different etiologies, possibly similar pathogenic mechanisms. Curr Opin Neurol 15(5):525–531

    PubMed  Google Scholar 

  • Babu J, Geetha T, Wooten M (2005) Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem 94(f27f4e63-a010-5926-f8b4-116f27f87842):192–395

    CAS  PubMed  Google Scholar 

  • Baker D et al (2011) Clearance of p16(Ink4a)-positive senescent cells delays ageing-associated disorders. Nature 479:232–236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barone M, Sykiotis G, Bohmann D (2011) Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson's disease. Dis Models Mech 4(29b98216-6e5f-44c2-693d-1f4bd0dc641e):701–708

    CAS  Google Scholar 

  • Bhat R et al (2012) Astrocyte senescence as a component of Alzheimer's disease. PLoS One 7(9)

  • Bitto A et al (2010a) Stress-induced senescence in human and rodent astrocytes. Exp Cell Res 316:2961–2968

    CAS  PubMed  Google Scholar 

  • Bitto A et al (2010b) Long-term IGF-I exposure decreases autophagy and cell viability. PLoS One 5(9)

  • Bjorkoy G et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614

    PubMed Central  PubMed  Google Scholar 

  • Burman J et al (2012) Analysis of neural subtypes reveals selective mitochondrial dysfunction in dopaminergic neurons from parkin mutants. Proc Natl Acad Sci U S A 109(26):10438–10443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buttner S et al (2008) Functional mitochondria are required for alpha-synuclein toxicity in aging yeast. J Biol Chem 283(12):7554–7560

    PubMed  Google Scholar 

  • Cao K et al (2011) Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med 3(89)

  • Chaudhary K, El-Sikhry H, Seubert J (2011) Mitochondria and the aging heart. JGC 8(3):159–167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheong H et al (2008) The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell 19(2):668–681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi A, Ryter S, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662

    CAS  PubMed  Google Scholar 

  • Copple I et al (2010) Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J Biol Chem 285(81009124-2876-05da-270c-84b2eb4bf664):16782–16790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cuervo A (2008) Autophagy and aging: keeping that old broom working. TIG 24(12):604–612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dalakas M (1991) Polymyositis, dermatomyositis and inclusion-body myositis. N Engl J Med 325(21):1487–1498

    CAS  PubMed  Google Scholar 

  • Del Roso A et al (2003) Ageing-related changes in the in vivo function of rat liver macroautophagy and proteolysis. Exp Gerontol 38(5):519–527

    PubMed  Google Scholar 

  • Demidenko ZN et al (2009) Rapamycin decelerates cellular senescence. Cell Cycle 8(12):1888–1895

    CAS  PubMed  Google Scholar 

  • Du Y et al (2009a) Age-associated oxidative damage to the p62 promoter: implications for Alzheimer disease. Free Radic Biol Med 46(23d068fb-0594-c642-03d0-07ddf3c86ab0):492–993

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du Y, Wooten M, Wooten M (2009b) Oxidative damage to the promoter region of SQSTM1/p62 is common to neurodegenerative disease. Neurobiol Dis 35(685e8d56-503b-eab5-c2b8-07dd602f3f7f):302–312

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dubourg O et al (2011) Diagnostic value of markers of muscle degeneration in sporadic inclusion body myositis. Acta myologica: myopathies and cardiomyopathies: official journal of the Mediterranean Society of Myology / edited by the Gaetano Conte Academy for the study of striated muscle diseases. 30(2):103-108

  • Duran A et al (2011) p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 44(1):134–146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan W et al (2010) Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy 6(a2b5697d-a785-653c-42b7-84b2eb17c4d1)

  • Frenzel H, Feimann J (1984) Age-dependent structural changes in the myocardium of rats. A quantitative light- and electron-microscopic study on the right and left chamber wall. Mech Ageing Dev 27(1):29–41

    CAS  PubMed  Google Scholar 

  • Geetha T, Wooten M (2002) Structure and functional properties of the ubiquitin binding protein p62. FEBS Lett 512(24344ce0-5262-a90c-1802-fc2e2b0a525f):19–43

    CAS  PubMed  Google Scholar 

  • Geetha T, Jiang J, Wooten M (2005) Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol Cell 20(1db9e0fb-5676-7dcd-89aa-116f27f72f5c):301–313

    CAS  PubMed  Google Scholar 

  • Geetha T et al (2008) p62 serves as a shuttling factor for TrkA interaction with the proteasome. Biochem Biophys Res Commun 374(f569f091-6fb4-2905-c0a9-1b280377cbcc):33–40

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geisler S et al (2010a) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131

    CAS  PubMed  Google Scholar 

  • Geisler S et al (2010b) The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 6(7):871–878

    CAS  PubMed  Google Scholar 

  • Geng J, Klionsky D (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep 9(9):859–864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilkerson R, et al. (2011) Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Human Mol Genet 21(5):978–990

    Google Scholar 

  • Gong Z, Muzumdar R (2012) Pancreatic function, type 2 diabetes, and metabolism in aging. Int J Endocrinol 2012(94bf4f10-7e61-8f0d-47cb-395213c68671):320482

    PubMed Central  PubMed  Google Scholar 

  • Goode A, Layfield R (2010) Recent advances in understanding the molecular basis of Paget disease of bone. J Clin Pathol 63(e67bfe6b-8256-f35a-f589-fc0dcd60d5a1):199–402

    CAS  PubMed  Google Scholar 

  • Handayaningsih A-E et al. (2012) IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway. Biochem Biophys Res Commun 425(2):478–484

    Google Scholar 

  • Hansen M et al (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4(2):e24

    PubMed Central  PubMed  Google Scholar 

  • Harman D (2003) The free radical theory of aging. Antioxid Redox Signal 5(5):557–561

    CAS  PubMed  Google Scholar 

  • He C, Klionsky D (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hughes A, Gottschling D (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492(7428):261–265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inamori Y et al (2012) Inclusion body myositis coexisting with hypertrophic cardiomyopathy: an autopsy study. NMD 22(8):747–754

    PubMed  Google Scholar 

  • Itakura E, Mizushima N (2011) p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol 192(35dd33bb-6bd5-d6ad-3d10-fcbe10fbbcb6):17–44

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itakura E et al (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19(12):5360–5372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jain A et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285(29):22576–22591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jang Y, Van Remmen H (2011) Age-associated alterations of the neuromuscular junction. Exp Gerontol 46(2–3):193–198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jin Z et al (2009) Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137(4):721–735

    CAS  PubMed  Google Scholar 

  • Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7(3):279–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joung I, Strominger J, Shin J (1996) Molecular cloning of a phosphotyrosine-independent ligand of the p56lck SH2 domain. Proc Natl Acad Sci U S A 93(529cf5e6-37c8-49cb-37e6-008f126febd7):5991–5996

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jung C et al (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20(7):1992–2003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang HT et al (2011) Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS One 6(8):e23367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaushik S, Cuervo A (2008) Chaperone-mediated autophagy. Methods Mol Biol (Clifton, NJ) 445:227–244

    CAS  Google Scholar 

  • Kim E et al (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10(552acb39-f20a-30f5-80fb-6f46f5589ac8):935–980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J et al (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirkin V et al (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33(4):505–516

    CAS  PubMed  Google Scholar 

  • Kitzman D, Edwards W (1990) Age-related changes in the anatomy of the normal human heart. J Gerontol 45(2):9

    Google Scholar 

  • Klass M (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6(6):413–429

    CAS  PubMed  Google Scholar 

  • Koga H, Kaushik S, Cuervo A (2011) Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 10(2):205–215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komatsu M et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131(6):1149–1163

    CAS  PubMed  Google Scholar 

  • Komatsu M et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12(3):213–223

    CAS  PubMed  Google Scholar 

  • Komatsu M, Kageyama S, Ichimura Y (2012) p62/SQSTM1/A170: physiology and pathology. Pharmacol Res Off J Ital Pharmacol Soc 66(6):457–462

    Google Scholar 

  • Korolchuk V et al (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 33(47c733bb-2560-6596-2d60-07bda3a4c8b9):517–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuusisto E, Salminen A, Alafuzoff I (2001) Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12(10):2085–2090

    CAS  PubMed  Google Scholar 

  • Kuusisto E, Salminen A, Alafuzoff I (2002) Early accumulation of p62 in neurofibrillary tangles in Alzheimer's disease: possible role in tangle formation. Neuropathol Appl Neurobiol 28(3bceda89-d3ed-f98e-1484-07daef4daadc):228–265

    CAS  PubMed  Google Scholar 

  • Kwon J et al (2012) Assurance of mitochondrial integrity and mammalian longevity by the p62-Keap1-Nrf2-Nqo1 cascade. EMBO Rep 13(e6cd8e22-20d2-22e1-d21d-e3874e265257):150–156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lalley P (2013) The aging respiratory system—pulmonary structure, function and neural control. Respir Physiol Neurobiol 187:199–210

    PubMed  Google Scholar 

  • Lamark T et al (2003) Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 278(4a65a5a4-71cb-2ade-e9ee-fc2e2b09dbc8):34568–34649

    CAS  PubMed  Google Scholar 

  • Landfield P et al (1981) Hippocampal aging in rats: a morphometric study of multiple variables in semithin sections. Neurobiol Aging 2(4):265–275

    CAS  PubMed  Google Scholar 

  • Lau A et al (2010) A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30(13):3275–3285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laurin N et al (2002) Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet 70(6):1582–1588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lecoultre V, Ravussin E (2011) Brown adipose tissue and aging. Curr Opin Clin Nutr Metab Care 14(1):1–6

    CAS  PubMed  Google Scholar 

  • Lee S et al (2010) PKCzeta-regulated inflammation in the nonhematopoietic compartment is critical for obesity-induced glucose intolerance. Cell Metab 12(64b8228e-3e87-bfd5-890a-3e48b17b5d2c):65–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J et al (2012) Autophagy suppresses interleukin-1β (IL-1β) signaling by activation of p62 degradation via lysosomal and proteasomal pathways. J Biol Chem 287(21aff234-8231-4f10-7d43-1535e01980f9):4033–4073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leiser S, Miller R (2010) Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice. Mol Cell Biol 30(f6928770-a92a-c84b-70bf-3f502d906abb):871–955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lerner C et al (2013) Reduced mTOR activity facilitates mitochondrial retrograde signaling and increases lifespan in normal fibroblasts. Aging Cell (In press)

  • Li W-W, Li J, Bao J-K (2012) Microautophagy: lesser-known self-eating. CMLS 69(7):1125–1136

    CAS  PubMed  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795

    CAS  PubMed  Google Scholar 

  • Longo V (1999) Mutations in signal transduction proteins increase stress resistance and longevity in yeast, nematodes, fruit flies, and mammalian neuronal cells. Neurobiol Aging 20(5):479–486

    CAS  PubMed  Google Scholar 

  • Mamidipudi V, Li X, Wooten M (2002) Identification of interleukin 1 receptor-associated kinase as a conserved component in the p75-neurotrophin receptor activation of nuclear factor-kappa B. J Biol Chem 277(48659987-f63a-21a3-c089-152bf7a64ec3):28010–28018

    CAS  PubMed  Google Scholar 

  • Mammucari C et al (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471

    CAS  PubMed  Google Scholar 

  • Mansouri A et al (2006) Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging. Mech Ageing Dev 127(3):298–306

    CAS  PubMed  Google Scholar 

  • Marcus S et al (1996) A p56(lck) ligand serves as a coactivator of an orphan nuclear hormone receptor. J Biol Chem 271(b9b0da87-fccd-43cc-0095-0174c302442e):27197–27397

    CAS  PubMed  Google Scholar 

  • Matsumoto G et al (2011) Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell 44(75e058b6-11c7-0417-c1eb-374a0a09fa5f):279–368

    CAS  PubMed  Google Scholar 

  • Mattson MP (2010) Perspective: does brown fat protect against diseases of aging? Ageing Res Rev 9(1):69–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuno Y et al (2006) Immunoreactivities of p62, an ubiquitin-binding protein, in the spinal anterior horn cells of patients with amyotrophic lateral sclerosis. J Neurol Sci 249(1):13–18

    CAS  PubMed  Google Scholar 

  • Mizushima N et al (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 116(Pt 9):1679–1688

    CAS  PubMed  Google Scholar 

  • Mizushima N et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moscat J, Diaz-Meco M (2011) Feedback on fat: p62-mTORC1-autophagy connections. Cell 147(7fe468c7-09ee-421a-bbe5-0fa750b8a785)

  • Narendra D et al (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(89cd27ab-ae69-8528-c6f4-1f3f639dc970):795–1598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narendra D et al (2010a) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6(8):1090–1106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narendra DP et al (2010b) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8(1):e1000298

    PubMed Central  PubMed  Google Scholar 

  • Nezis I, Stenmark H (2012) p62 at the interface of autophagy, oxidative stress signaling, and cancer. Antioxid Redox Signal 17(5):786–793

    CAS  PubMed  Google Scholar 

  • Nezis I et al (2008) Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J Cell Biol 180(6):1065–1071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nogalska A et al (2009) p62/SQSTM1 is overexpressed and prominently accumulated in inclusions of sporadic inclusion-body myositis muscle fibers, and can help differentiating it from polymyositis and dermatomyositis. Acta Neuropathol 118(3):407–413

    CAS  PubMed  Google Scholar 

  • Nogalska A et al (2010) Novel demonstration of amyloid-β oligomers in sporadic inclusion-body myositis muscle fibers. Acta Neuropathol 120(5):661–666

    CAS  PubMed  Google Scholar 

  • Nogalska A et al (2011) Novel demonstration of conformationally modified tau in sporadic inclusion-body myositis muscle fibers. Neurosci Lett 503(3):229–233

    CAS  PubMed  Google Scholar 

  • Okatsu K et al (2010) p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 15(8):887–900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ozawa T (1998) Mitochondrial DNA mutations and age. Ann N Y Acad Sci 854:128–154

    CAS  PubMed  Google Scholar 

  • Pankiv S et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145

    CAS  PubMed  Google Scholar 

  • Pankiv S et al (2010) Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 285(3c704f44-98ab-1180-47d3-0682c131049e):5941–5994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pattingre S et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939

    CAS  PubMed  Google Scholar 

  • Piantadosi CA et al (2008) Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res 103(11):1232–1240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Polak P et al (2008) Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 8(84e93330-7322-b853-cd6e-3a6ea7481b27):399–809

    CAS  PubMed  Google Scholar 

  • Porta EA (1991) Advances in age pigment research. Arch Gerontol Geriatr 12(2–3):303–320

    CAS  PubMed  Google Scholar 

  • Rachubinski R, Marcus S, Capone J (1999) The p56(lck)-interacting protein p62 stimulates transcription via the SV40 enhancer. J Biol Chem 274(5ae492ce-035d-a8aa-4ee9-fc2e2b0a2e07):18278–18362

    CAS  PubMed  Google Scholar 

  • Ramesh Babu J et al (2008) Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem 106(27a74d97-a739-d297-646d-16c8da17e322):107–127

    CAS  PubMed  Google Scholar 

  • Ramsey C et al (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66(6a48f324-2d51-2aa2-8725-1b0928e05358):75–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ravikumar B et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595

    CAS  PubMed  Google Scholar 

  • Ringel S et al (1987) Spectrum of inclusion body myositis. Arch Neurol 44(11):1154–1157

    CAS  PubMed  Google Scholar 

  • Robida-Stubbs S et al (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15(5):713–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez A et al (2006) Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab 3(0a30ac0c-ca9e-5ee9-59ec-24cbc90092cf):211–233

    CAS  PubMed  Google Scholar 

  • Salminen A et al (2011) Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J Neurosci 34(1):3–11

    PubMed  Google Scholar 

  • Salmon A et al (2005) Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab 289(1):9

    Google Scholar 

  • Sancak Y et al (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Sci (New York, NY) 320(56ca5f23-896a-b94e-de3e-0c4be356193c):1496–1997

    CAS  Google Scholar 

  • Sancak Y et al (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(01f0f45f-84d6-a5ce-e325-0c4b1f2cde36):290–593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez P et al (1998) Localization of atypical protein kinase C isoforms into lysosome-targeted endosomes through interaction with p62. Mol Cell Biol 18(6abf35eb-a291-e542-7256-008f126e35a9):3069–3149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanz L et al (1999) The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J 18(28a44be7-14d0-4c74-cc5a-01ea9df668a3):3044–3097

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanz L et al (2000) The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J 19(dec466e5-a9e0-db20-d2db-01c4befea22f):1576–1662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmucker D (2005) Age-related changes in liver structure and function: implications for disease ? Exp Gerontol 40(8–9):650–659

    CAS  PubMed  Google Scholar 

  • Schmucker D, Sachs H (2002) Quantifying dense bodies and lipofuscin during aging: a morphologist's perspective. Arch Gerontol Geriatr 34(3):249–261

    CAS  PubMed  Google Scholar 

  • Seibenhener ML et al (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24(18):8055–8068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seo A et al (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123(Pt 15):2533–2542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinclair D, Guarente L (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91(7):1033–1042

    CAS  PubMed  Google Scholar 

  • Spilman P et al (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS One 5(4):e9979

    PubMed Central  PubMed  Google Scholar 

  • Steinbaugh M et al (2012) Activation of genes involved in xenobiotic metabolism is a shared signature of mouse models with extended lifespan. Am J Physiol Endocrinol Metab 303(4):95

    Google Scholar 

  • Stępkowski T, Kruszewski M (2011) Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Free Radic Biol Med 50(36577d97-5454-ace8-d631-84b2eb1acb05):1186–1281

    PubMed  Google Scholar 

  • Szweda P et al (2003) Aging, lipofuscin formation, and free radical-mediated inhibition of cellular proteolytic systems. Ageing Res Rev 2(4):383–405

    CAS  PubMed  Google Scholar 

  • Tan J, et al (2008) Lysine 63-linked polyubiquitin potentially partners with p62 to promote the clearance of protein inclusions by autophagy. Autophagy 4:251–253

    Google Scholar 

  • Tan JM et al (2008b) Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet 17(3):431–439

    CAS  PubMed  Google Scholar 

  • Tang F et al (2011) RNF185, a novel mitochondrial ubiquitin E3 ligase, regulates autophagy through interaction with BNIP1. PLoS One 6(2caa5a85-183c-3c9d-537c-84b2eb293c9e)

  • Toth SE (1968) The origin of lipofuscin age pigments. Exp Gerontol 3(1):19–30

    CAS  PubMed  Google Scholar 

  • Tóth M et al (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4(3):330–338

    PubMed  Google Scholar 

  • Um S et al (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431(1ae7851e-f1fe-5adc-6b8c-3a5109b98611):200–205

    CAS  PubMed  Google Scholar 

  • Um S, D'Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3(fb9365a2-b3f2-6ed9-7322-3edcb615be48):393–795

    CAS  PubMed  Google Scholar 

  • Vadlamudi R, Shin J (1998) Genomic structure and promoter analysis of the p62 gene encoding a non-proteasomal multiubiquitin chain binding protein. FEBS Lett 435(2–3):138–142

    CAS  PubMed  Google Scholar 

  • Vadlamudi R et al (1996) p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J BiolChem 271(e002a393-07b2-a95e-5354-fc56877148c3):20235–20242

    CAS  Google Scholar 

  • Vaughan D, Peters A (1974) Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: an electron microscope study. J Neurocytol 3(4):405–429

    CAS  PubMed  Google Scholar 

  • von Otter M et al (2010) Association of Nrf2-encoding NFE2L2 haplotypes with Parkinson's disease. BMC Med Genet 11(ea342ab4-65bd-117a-1b99-1f4bd0e008b2):36

    Google Scholar 

  • Wang M, Miller R (2012) Fibroblasts from long-lived mutant mice exhibit increased autophagy and lower TOR activity after nutrient deprivation or oxidative stress. Aging Cell 11(4):668–674

    PubMed Central  PubMed  Google Scholar 

  • Watanabe Y, Tanaka M (2011) p62/SQSTM1 in autophagic clearance of a non-ubiquitylated substrate. J Cell Sci 124(Pt 16):2692–2701

    CAS  PubMed  Google Scholar 

  • Wei M et al (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4(1)

  • Wooten M et al (2001) The atypical protein kinase C-interacting protein p62 is a scaffold for NF-kappaB activation by nerve growth factor. J Biol Chem 276(95729bab-6726-13b1-9482-01c430398cd6):7709–7721

    CAS  PubMed  Google Scholar 

  • Wooten M et al (2005) The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J Biol Chem 280(2978358a-d99d-7f3a-c8da-01c23fc80840):35625–35634

    CAS  PubMed  Google Scholar 

  • Xie Z, Nair U, Klionsky D (2008) Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19(8):3290–3298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young A et al (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23(7):798–803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y et al (2009) Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A 106(f900c956-7e9b-e365-2109-3a67f3160fb4):19860–19865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao J et al (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483

    CAS  PubMed  Google Scholar 

  • Zheng YT et al (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183(9):5909–5916

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Sell.

About this article

Cite this article

Bitto, A., Lerner, C.A., Nacarelli, T. et al. p62/SQSTM1 at the interface of aging, autophagy, and disease. AGE 36, 1123–1137 (2014). https://doi.org/10.1007/s11357-014-9626-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-014-9626-3

Keywords

Navigation