Skip to main content

Advertisement

Log in

Prevalence of site-specific thigh sarcopenia in Japanese men and women

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The purpose of this study was to compare the prevalence of severe sarcopenia detected by total skeletal muscle mass (SM) index and of site-specific thigh sarcopenia for differing age groups in men and women. Japanese nonobese men and women aged 20 to 85 (n = 1,994, 55 % women) had muscle thickness (MTH) measured by ultrasound at six sites on the anterior and posterior aspects of the body. SM was estimated from ultrasound-derived prediction equations. Site-specific thigh sarcopenia was calculated using ultrasound-measured MTH at the anterior and posterior aspects of the thigh (MTH ratio, anterior 50 %/posterior 50 % thigh MTH (A50/P50 MTH)). Sarcopenia was defined as a SM index (SM divided by height2) of >2 standard deviations (SD) below the mean for young adults. Site-specific thigh sarcopenia was defined as a ratio of A50/P50 MTH of >2 SD below the mean for young adults. Age was inversely correlated to SM index and A50/P50 MTH in men (r = −0.480 and r = −0.522) and women (r = −0.243 and r = −0.516). The prevalence rate of sarcopenia was less than 3 % for women under the age of 60, 7 % for ages 60–69, and 24 % for ages 70–80. In men, the prevalence rate of sarcopenia was less than 7 % under the age of 50, 18 % for ages 50–59, 33 % for ages 60–69, and 47 % for ages 70–85. Compared to the sarcopenia estimated by SM index, there was a higher prevalence of site-specific thigh sarcopenia observed in both sexes. These results suggest that site-specific thigh sarcopenia appears before it is able to be detected at the whole body level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M (2010) Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 20:49–64

    Article  CAS  PubMed  Google Scholar 

  • Abe T, Kondo M, Kawakami Y, Fukunaga T (1994) Prediction equations for body composition of Japanese adults by B-mode ultrasound. Am J Hum Biol 6:161–170

    Article  Google Scholar 

  • Abe T, Kawakami Y, Suzuki Y, Gunji A, Fukunaga T (1997) Effects of 20 days bed rest on muscle morphology. J Gravitat Physiol 4:S10–14

    CAS  Google Scholar 

  • Abe T, Kawakami Y, Kondo M, Fukunaga T (2011a) Comparison of ultrasound-measured age-related, site-specific muscle loss between healthy Japanese and German men. Clin Physiol Funct Imaging 31:320–325

    Article  PubMed  Google Scholar 

  • Abe T, Sakamaki M, Yasuda T, Bemben MG, Kondo M, Kawakami Y, Fukunaga T (2011b) Age-related, site-specific muscle loss in 1507 Japanese men and women aged 20 to 95 years. J Sports Sci Med 10:145–150

    PubMed Central  PubMed  Google Scholar 

  • Abe T, Bemben MG, Kondo M, Kawakami Y, Fukunaga T (2012a) Comparison of skeletal muscle mass to fat-free mass ratios among different ethnic groups. J Nutr Health Aging 16:534–538

    Article  CAS  PubMed  Google Scholar 

  • Abe T, Mitsukawa N, Thiebaud RS, Loenneke JP, Loftin M, Ogawa M (2012b) Lower body site-specific sarcopenia and accelerometer-determined moderate and vigorous physical activity: the HIREGASAKI study. Aging Clin Exp Res 24(6):657–62. doi:10.3275/8758, pubblicato: 26.11.2012

    PubMed  Google Scholar 

  • Abe T, Ogawa M, Loenneke JP, Thiebaud RS, Loftin M, Mitsukawa N (2012c) Relationship between site-specific loss of thigh muscle and gait performance in women: the HIREGASAKI study. Arch Gerontol Geriatr 55:e21–e25

    Article  PubMed  Google Scholar 

  • Abe T, Thiebaud RS, Loenneke JP, Loftin M, Bemben MG, Fukunaga T (2012d) Influence of severe sarcopenia on cardiovascular risk factors in nonobese men. Metab Syndr Relat Disord 10:407–412

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross R, Garry PJ, Linderman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763

    Article  CAS  PubMed  Google Scholar 

  • Belanger M, Townsend N, Foster C (2011) Age-related differences in physical activity profiles of English adults. Prev Med 52:247–249

    PubMed  Google Scholar 

  • Bijlsma AY, Meskers CGM, Ling CH, Narici M, Kurrle SE, Cameron ID, Westendrorp RG, Maier AB (2013) Defining sarcopenia: the impact of different diagnostic criteria on the prevalence of sarcopenia in a large middle aged cohort. Age 35(3):871–881. doi:10.1007/s11357-012-9384-z

    Article  CAS  PubMed  Google Scholar 

  • Brozek J, Grande F, Anderson JT, Keys A (1963) Densitometric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci 110:113–140

    Article  CAS  PubMed  Google Scholar 

  • Chien MY, Huang TY, Wu YT (2008) Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J Am Geriatr Soc 56:1710–1715

    Article  PubMed  Google Scholar 

  • Clark BC (2009) In vivo alterations in skeletal muscle form and function after disuse atrophy. Med Sci Sports Exerc 41:1869–1875

    Article  CAS  PubMed  Google Scholar 

  • Dufour AB, Hannan MT, Murabito JM, Kiel DP, McLean RR (2012) Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham study. J Gerontol A Biol Sci Med Sci 68(2):168–74. doi:10.1093/Gerona/gls109

    Article  PubMed  Google Scholar 

  • Frontera WR, Reid KF, Phillips EM, Krivickas LS, Hughes VA, Roubenoff R et al (2008) Muscle fiber size and function in elderly humans: a longitudinal study. J Appl Physiol 105:637–642

    Article  PubMed  Google Scholar 

  • Guo SS, Zeller C, Chumlea WC, Siervogel RM (1999) Ageing, body composition, and lifestyle: the Fels Longitudinal Study. Am J Clin Nutr 70:405–411

    CAS  PubMed  Google Scholar 

  • James DE, Jenkins AB, Kraegen EW (1985) Heterogeneity of insulin action in individual muscles in vivo: euglycemic clamp studies in rats. Am J Physiol 248:E567–E574

    CAS  PubMed  Google Scholar 

  • Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Getriatr Soc 50:889–896

    Article  Google Scholar 

  • Kim YS, Lee Y, Chung YS, Lee DJ, Joo NS, Hong D, Song G, Kim HJ, Choi YJ, Kim KM (2012) Prevalence of sarcopenia and sarcopenic obesity in the Korean population based on the Fourth Korean National Health and Nutritional Examination Surveys. J Gerontol A Biol Sci Med Sci 67:1107–1113

    Article  PubMed  Google Scholar 

  • Lee CG, Boyko EJ, Strotmeyer ES, Lewis CE, Cawthon PM, Hoffman AR et al (2011) Association between insulin resistance and lean mass loss and fat mass gain in older men without diabetes mellitus. J Am Geriatr Soc 59:1217–1224

    Article  PubMed Central  PubMed  Google Scholar 

  • Livshits G, Malkin I, Williams FM, Hart DJ, Hakim A, Spector TD (2012) Longitudinal study of variation in body mass index in middle-aged UK females. Age 34:1285–1294

    Article  PubMed  Google Scholar 

  • Masanes F, Culla A, Navarro-Gonzalez M, Navarro-Lopez M, Sacanella E, Torres B et al (2012) Prevalence of sarcopenia in healthy community-dwelling elderly in an urban area of Barcelona (Spain). J Nutr Health Aging 16:184–187

    Article  CAS  PubMed  Google Scholar 

  • Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3:260

    Article  PubMed Central  PubMed  Google Scholar 

  • Morley JE (2003) Hormones and the aging process. J Am Geriatr Soc 51:S333–S337

    Article  PubMed  Google Scholar 

  • Newman AB, Kupelian V (2003) Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 51:1602–1609

    Article  PubMed  Google Scholar 

  • Ogawa M, Yasuda T, Abe T (2012) Component characteristics of thigh muscle volume in young and older healthy men. Clin Physiol Funct Imaging 32:89–93

    Article  PubMed  Google Scholar 

  • Park H, Park S, Shephard RJ, Aoyagi Y (2010) Yearlong physical activity and sarcopenia in older adults: the Nakanojo Study. Eur J Appl Physiol 109:953–961

    Article  PubMed  Google Scholar 

  • Rolland Y, Lauwers-Cances V, Cournot M, Nourhashemi F, Reynish W, Riviere D et al (2003) Sarcopenia, calf circumference, and physical function of elderly women: a cross-sectional study. J Am Geriatr Soc 51:1120–1124

    Article  PubMed  Google Scholar 

  • Sanada K, Kearns CF, Midorikawa T, Abe T (2006) Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults. Eur J Appl Physiol 96:24–31

    Article  PubMed  Google Scholar 

  • Sawai S, Sanematsu H, Kanehisa H, Tsunoda N, Fukunaga T (2006) Sexual-related difference in the level of muscular activity of trunk and lower limb during basic daily life actions. Jap J Phys Fit Sports Med 55:247–258

    Article  Google Scholar 

  • Shirasawa H, Kanehisa H, Kouzaki M, Masani K, Fukunaga T (2009) Differences among lower leg muscles in long-term activity during ambulatory condition without any moderate to high intensity exercise. J Electromyogr Kinesiol 19:e50–e56

    Article  PubMed  Google Scholar 

  • Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L (2008) Sarcopenic obesity—definition, etiology and consequences. Curr Opin Clin Nutr Metab Care 11:693–700

    Article  PubMed Central  PubMed  Google Scholar 

  • Tanimoto Y, Watanabe M, Sun M, Sugiura Y, Tsuda Y, Kimura M, Hayashida I, Kusabiraki T, Kono K (2012) Association between sarcopenia and higher-level functional capacity in daily living in community-dwelling elderly subjects in Japan. Arch Gerontol Geriatr 55:e9–e13

    Article  PubMed  Google Scholar 

  • Tardieu C, Tabary JC, Tardieu G, Tabary C (1980) Adaptation of sarcomere numbers to the length imposed on the muscle. Adv Physiol Sci 24:99–114

    Google Scholar 

  • Tichet J, Vol S, Goxe D, Salle A, Berrut G, Ritz P (2008) Prevalence of sarcopenia in the French senior population. J Nutr Health Aging 12:202–206

    Article  CAS  PubMed  Google Scholar 

  • Verschueren S, Gielen E, O’Neill TW, Pye SR, Adams JE, Ward KA, Wu FC, Szulc P, Laurent M, Claessens F, Vanderschueren D, Boonen S (2012) Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int 24(1):87–98. doi:10.1007/s00198-012-2057-z

    Article  PubMed  Google Scholar 

  • WHO (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. WHO technical report series 894, Geneva, Switzerland

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Abe.

About this article

Cite this article

Abe, T., Thiebaud, R.S., Loenneke, J.P. et al. Prevalence of site-specific thigh sarcopenia in Japanese men and women. AGE 36, 417–426 (2014). https://doi.org/10.1007/s11357-013-9539-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-013-9539-6

Keywords

Navigation