Skip to main content
Log in

Chronic caffeine intake reverses age-induced insulin resistance in the rat: effect on skeletal muscle Glut4 transporters and AMPK activity

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The role of caffeine consumption on insulin action is still under debate. The hypothesis that chronic caffeine intake reverses aging-induced insulin resistance in the rat was tested in this work. The mechanism by which caffeine restores insulin sensitivity was also investigated. Six groups of rats were used: 3 months old (3 M), 3 months old caffeine-treated (3MCaf), 12 months old (12 M), 12 months old caffeine-treated (12MCaf), 24 months old (24 M), and 24 months old caffeine-treated (24MCaf). Caffeine was administered in drinking water (1 g/l) during 15 days. Insulin sensitivity was assessed by means of the insulin tolerance test. Blood pressure, body weight, visceral and total fat, fasting glycemia and insulinemia, plasma nonesterified fatty acids (NEFA), total antioxidant capacity (TAC), cortisol, nitric oxide, and catecholamines were monitored. Skeletal muscle Glut4 and 5′-AMP activated protein kinase (AMPK) protein expression and activity were also assessed. Aged rats exhibited diminished insulin sensitivity accompanied by hyperinsulinemia and normoglycemia, increased visceral and total fat, decreased TAC and plasma catecholamines, and also decreased skeletal muscle Glut4 and AMPK protein expression. Chronic caffeine intake restored insulin sensitivity and regularized circulating insulin and NEFA in both aging models. Caffeine neither modified skeletal muscle AMPK expression nor activity in aged rats; however, it decreased visceral and total fat in 12 M rats and it restored skeletal muscle Glut4 expression to control values in 24 M rats. We concluded that chronic caffeine intake reverses aging-induced insulin resistance in rats by decreasing NEFA production and also by increasing Glut4 expression in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acheson KJ, Gremaud G, Meirim I, Montigon F, Krebs Y, Fay LB, Gay LJ, Schneiter P, Schindler C, Tappy L (2004) Metabolic effects of caffeine in humans: lipid oxidation or futile cycling? Am J Clin Nutr 79:40–46

    PubMed  CAS  Google Scholar 

  • Akiba T, Yaguchi K, Tsutsumi K, Nishioka T, Koyama I, Nomura M, Yokogawa K, Moritani S, Miyamoto K (2004) Inhibitory mechanism of caffeine on insulin-stimulated glucose uptake in adipose cells. Biochem Pharmacol 68:1929–1937

    Article  PubMed  CAS  Google Scholar 

  • Astrup A, Breum L, Toubro S, Hein P, Quaade F (1992) The effect and safety of an ephedrine/caffeine compound compared to ephedrine, caffeine and placebo in obese subjects on an energy restricted diet. A double blind trial. Int J Obes Relat Metab Disord 16:269–277

    PubMed  CAS  Google Scholar 

  • Bartke A (2008) Insulin and aging. Cell Cycle 7:3338–3343

    Article  PubMed  CAS  Google Scholar 

  • Benowitz NL (1990) Clinical pharmacology of caffeine. Annu Rev Med 41:277–288

    Article  PubMed  CAS  Google Scholar 

  • Carrascosa JM, Andrés A, Ros M, Bogónez E, Arribas C, Fernández-Agulló T, De Solís AJ, Gallardo N, Martínez C (2011) Development of insulin resistance during ageing: involvement of central processes and role of adipokines. Curr Protein Pept Sci 12:305–315

    Article  PubMed  CAS  Google Scholar 

  • Chanséaume E, Morio B (2009) Potential mechanisms of muscle mitochondrial dysfunction in aging and obesity and cellular consequences. Int J Mol Sci 10:306–324

    Article  PubMed  Google Scholar 

  • Cizza G, Pacak K, Kvetnansky R, Palkovits M, Goldstein DS, Brady LS, Fukuhara K, Bergamini E, Kopin IJ, Blackman MR (1995) Decreased stress responsivity of central and peripheral catecholaminergic systems in aged 344/N Fischer rats. J Clin Invest 95:1217–1224

    Article  PubMed  CAS  Google Scholar 

  • Cognato GP, Agostinho PM, Hockemeyer J, Müller CE, Souza DO, Cunha RA (2010) Caffeine and an adenosine A(2A) receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life. J Neurochem 112:453–462

    Article  PubMed  CAS  Google Scholar 

  • Conde SV, Nunes da Silva T, Gonzalez C, Mota Carmo M, Monteiro EC, Guarino MP (2012) Chronic caffeine intake decreases circulating catecholamines and prevents diet-induced insulin resistance and hypertension in rats. Br J Nutr 107:86–95

    Article  PubMed  CAS  Google Scholar 

  • Corsetti G, Pasini E, Assanelli D, Bianchi R (2008) Effects of acute caffeine administration on NOS and Bax/Bcl2 expression in the myocardium of rat. Pharmacol Res 57:19–25

    Article  PubMed  CAS  Google Scholar 

  • DeFronzo RA (1981) Glucose intolerance and ageing. Diabetes Care 4:493–501

    Article  PubMed  CAS  Google Scholar 

  • Di Nardo F, Burattini R, Cogo CE, Faelli E, Ruggeri P (2009) Age-related analysis of insulin resistance, body weight and arterial pressure in the Zucker fatty rat. Exp Physiol 94:162–168

    Article  PubMed  Google Scholar 

  • Dulloo AG, Seydoux J, Girardier L (1992) Potentiation of the thermogenic antiobesity effects of ephedrine by dietary methylxanthines: adenosine antagonism or phosphodiesterase inhibition? Metabolism 41:1233–1241

    Article  PubMed  CAS  Google Scholar 

  • Egawa T, Hamada T, Kameda N, Karaike K, Ma X, Masuda S, Iwanaka N, Hayashi T (2009) Caffeine acutely activates 5′adenosine monophosphate-activated protein kinase and increases insulin-independent glucose transport in rat skeletal muscles. Metabolism 58:1609–1617

    Article  PubMed  CAS  Google Scholar 

  • Escrivá F, Gavete ML, Fermín Y, Pérez C, Gallardo N, Alvarez C, Andrés A, Ros M, Carrascosa JM (2007) Effect of age and moderate food restriction on insulin sensitivity in Wistar rats: role of adiposity. J Endocrinol 194:131–141

    Article  PubMed  Google Scholar 

  • Exton JH, Park CR (1968) Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines, and adenosine 3′,5′-monophosphate on gluconeogenesis in the perfused rat liver. J Biol Chem 243:4189–4196

    PubMed  CAS  Google Scholar 

  • Exton JH, Friedmann N, Wong EH, Brineaux JP, Corbin JD, Park CR (1972) Interaction of glucocorticoids with glucagon and epinephrine in the control of gluconeogenesis and glycogenolysis in liver and of lipolysis in adipose tissue. J Biol Chem 247:3579–3588

    PubMed  CAS  Google Scholar 

  • Fink RI, Kolterman OG, Griffin J, Olefsky JM (1983) Mechanisms of insulin resistance in ageing. J Clin Invest 71:1523–1535

    Article  PubMed  CAS  Google Scholar 

  • Fink RI, Wallace P, Olefsky JM (1986) Effects of ageing on glucose-mediated glucose disposal and glucose transport. J Clin Invest 77:2034–2041

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    PubMed  CAS  Google Scholar 

  • Gasior M, Jaszyna M, Munzar P, Witkin JM, Goldberg SR (2002) Caffeine potentiates the discriminative-stimulus effects of nicotine in rats. Psychopharmacology (Berl) 162:385–395

    Article  CAS  Google Scholar 

  • Graham TE, Helge JW, MacLean DA, Kiens B, Richter EA (2000) Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J Physiol 529:837–847

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JA, Boozer CN, Geliebter A (2006) Coffee, diabetes, and weight control. Am J Clin Nutr 84:682–693

    PubMed  CAS  Google Scholar 

  • Holtzman SG (1990) Caffeine as a model drug of abuse. Trends Pharmacol Sci 11:355–356

    Article  PubMed  CAS  Google Scholar 

  • Jensen TE, Rose AJ, Hellsten Y, Wojtaszewski JF, Richter EA (2007) Caffeine-induced Ca(2+) release increases AMPK-dependent glucose uptake in rodent soleus muscle. Am J Physiol Endocrinol Metab 293:E286–E292

    Article  PubMed  CAS  Google Scholar 

  • Jeukendrup AE, Randell R (2011) Fat burners: nutrition supplements that increase fat metabolism. Obes Rev 12:841–851

    Google Scholar 

  • Keijzers GB, De Galan BE, Tack CJ, Smits P (2002) Caffeine can decrease insulin sensitivity in humans. Diabetes Care 25:364–369

    Article  PubMed  CAS  Google Scholar 

  • Kim JA, Wei Y, Sowers JR (2008) Role of mitochondrial dysfunction in insulin resistance. Circ Res 102:401–414

    Google Scholar 

  • Kovacs P, Stumvoll M (2005) Fatty acids and insulin resistance in muscle and liver. Best Pract Res Clin Endocrinol Metab 19:625–635

    Article  PubMed  CAS  Google Scholar 

  • Lafontan M, Langin D (2009) Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 48:275–297

    Article  PubMed  CAS  Google Scholar 

  • Landsberg L, Young JB (1978) Fasting, feeding and regulation of the sympathetic nervous system.N Engl J Med 298:1295–1301

    Google Scholar 

  • Lee JJ, Chang CK, Liu IM, Chi TC, Yu HJ, Cheng JT (2001) Changes in endogenous monoamines in aged rats. Clin Exp Pharmacol Physiol 28:285–289

    Article  PubMed  CAS  Google Scholar 

  • Long YC, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116:1776–1783

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Garcia E, van Dam RM, Rajpathak S, Willett WC, Manson JE, Hu FB (2006) Changes in caffeine intake and long-term weight change in men and women. Am J Clin Nutr 83:674–680

    PubMed  CAS  Google Scholar 

  • Luo Z, Saha AK, Xiang X, Ruderman NB (2005) AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 26:69–76

    Article  PubMed  CAS  Google Scholar 

  • Moisey LL, Kacker S, Bickerton AC, Robinson LE, Graham TE (2008) Caffeinated coffee consumption impairs blood glucose homeostasis in response to high and low glycemic index meals in healthy men. Am J Clin Nutr 87:1254–1261

    PubMed  CAS  Google Scholar 

  • Mukwevho E, Kohn TA, Lang D, Nyatia E, Smith J, Ojuka EO (2008) Caffeine induces hyperacetylation of histones at the MEF2 site on the Glut4 promoter and increases MEF2A binding to the site via a CaMK-dependent mechanism. Am J Physiol Endocrinol Metab 294:E582–E588

    Article  PubMed  CAS  Google Scholar 

  • Mulder AH, Tack CJ, Olthaar AJ, Smits P, Sweep FC, Bosch RR (2005) Adrenergic receptor stimulation attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes by inhibiting Glut4 translocation. Am J Physiol Endocrinol Metab 289:E627–E633

    Article  PubMed  CAS  Google Scholar 

  • Natella F, Scaccini C (2012) Role of coffee in modulation of diabetes risk. Nutr Rev 70:207–217

    Article  PubMed  Google Scholar 

  • Ofluoglu E, Pasaoglu H, Pasaoglu A (2009) The effects of caffeine on l-arginine metabolism in the brain of rats. Neurochem Res 34:395–399

    Article  PubMed  CAS  Google Scholar 

  • Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, Zuppi C, Ghirlanda G (2010) Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud 7:15–25

    Article  PubMed  Google Scholar 

  • Rowe JW, Minaker KL, Pallotta JA, Flier JS (1983) Characterization of the insulin resistance of ageing. J Clin Invest 71:1581–1587

    Article  PubMed  CAS  Google Scholar 

  • Ruderman NB, Saha AK (2006) Metabolic syndrome: adenosine monophosphate-activated protein kinase and malonyl coenzyme A. Obesity (Silver Spring) 14:25S–33S

    Article  CAS  Google Scholar 

  • Scharf G, Prustomersky S, Huber WW (2001) Elevation of glutathione levels by coffee components and its potential mechanisms. Adv Exp Med Biol 500:535–539

    Article  PubMed  CAS  Google Scholar 

  • Seals DR, Bell C (2004) Chronic sympathetic activation: consequence and cause of age-associated obesity? Diabetes 53:276–284

    Article  PubMed  CAS  Google Scholar 

  • van Dam RM, Feskens EJ (2002) Coffee consumption and risk of type 2 diabetes mellitus. Lancet 360:1477–1478

    Google Scholar 

  • van Dam RM, Willett WC, Manson JE, Hu FB (2006) Coffee, caffeine, and risk of type 2 diabetes: a prospective cohort study in younger and middle-aged U.S. women. Diabetes Care 29:398–403

    Article  PubMed  Google Scholar 

  • Whishaw IQ, Kolb B, Sutherland RJ (1983) The analysis of behaviour in the laboratory rat. In: Robinson TE (ed) Behavioral approaches to brain research. Oxford University Press, New York, pp 141–211

    Google Scholar 

  • Wright DC, Hucker KA, Holloszy JO, Han DH (2004) Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes 53:330–335

    Article  PubMed  CAS  Google Scholar 

  • Young DA, Wallberg-Henriksson H, Cranshaw J, Chen M, Holloszy JO (1985) Effect of catecholamines on glucose uptake and glycogenolysis in rat skeletal muscle. Am J Physiol 248:C406–C409

    PubMed  CAS  Google Scholar 

  • Zeyda M, Stulnig TM (2009) Obesity, inflammation, and insulin resistance—a mini-review. Gerontology 55:379–386

    Article  PubMed  CAS  Google Scholar 

  • Zheng G, Sayama K, Okubo T, Juneja LR, Oguni I (2004) Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo 18:55–62

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Elena Gonzalez Muñoz and Constancio Gonzalez from the Faculty of Medicine of the University of Valladolid for the serum catecholamines quantification. We also thank to Inês Faustino for her technical support and to Dr. Michael Bright for reviewing the English. The work was financially supported by L’Oreal-Unesco-FCT Awards for Women in Science 2009-Portugal and by Portuguese Foundation for Science and Technology grant PTDC/SAU-ORG/111417/2009. There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvia V. Conde.

About this article

Cite this article

Guarino, M.P., Ribeiro, M.J., Sacramento, J.F. et al. Chronic caffeine intake reverses age-induced insulin resistance in the rat: effect on skeletal muscle Glut4 transporters and AMPK activity. AGE 35, 1755–1765 (2013). https://doi.org/10.1007/s11357-012-9475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-012-9475-x

Keywords

Navigation