Skip to main content

Advertisement

Log in

The impact of age on the physical and cellular properties of the human limbal stem cell niche

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The limbal niche in the corneoscleral junction of the eye, habitat of the limbal epithelial stem cells (LESC), facilitates corneal epithelial regeneration by providing physical support and chemical signalling. Anatomical structures within the limbus, namely, limbal epithelial crypts and focal stromal projections, are believed to function as a putative niche for LESCs. In this study, the impact of age on the topography of this niche was investigated. Also, the relationship between niche topography and limbal epithelial cell phenotype was assessed. Ex vivo imaging of the limbus in cadaveric tissue of donors aged from infancy to 90 years was carried out using electron and confocal microscopy. The data suggested that the area occupied by the crypts was sharply reduced after the age of 60 years. The niche microstructures also became smoother with donor age. The phenotypic assessment of cultured limbal epithelial cells harvested from donors of different ages showed that the levels of putative stem cell markers as well as telomerase activity and telomere length remained unchanged, regardless of niche topography. However, the colony forming efficiency of the cultures was significantly reduced with age (p < 0.05). This is the first comprehensive study of the effect of age on the structural and phenotypic characteristics of the human limbal niche. The results have a significant biological value as they suggest a correlation of limbal architecture with decline of re-epithelialisation rate in older patients. Overall, the data also suggest that LESCs harvested from younger donors may be more suitable for cultured LESC therapy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA 84(8):2302–2306

    Article  PubMed  CAS  Google Scholar 

  • Baylis O, Figueiredo F, Henein C, Lako M, Ahmad S (2011) 13 years of cultured limbal epithelial cell therapy: a review of the outcomes. J Cell Biochem 112 (4). doi:10.1002/jcb.23028

  • Boulton M, Albon J (2004) Stem cells in the eye. Int J Biochem Cell Biol 36(4):643–657

    Article  PubMed  CAS  Google Scholar 

  • Boyle M, Wong C, Rocha M, Jones DL (2007) Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1:470–478. doi:10.1016/j.stem.2007.08.002

    Article  PubMed  CAS  Google Scholar 

  • Carlson ME, Conboy MJ, Hsu M, Barchas L, Jeong J, Agrawal A, Mikels AJ, Agrawal S, Schaffer DV, Conboy IM (2009) Relative roles of TGF-beta 1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell 8(6):676–689. doi:10.1111/j.1474-9726.2009.00517.x

    Article  PubMed  CAS  Google Scholar 

  • Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361(9355):393–395

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Turkel N, Hemati N, Fuller MT, Hunt AJ, Yamashita YM (2008) Centrosome misorientation reduces stem cell division during ageing. Nature 456(7222):599–U540. doi:10.1038/nature07386

    Article  PubMed  CAS  Google Scholar 

  • Chiu CP, Dragowska W, Kim NW, Vaziri H, Yui J, Thomas TE, Harley CB, Lansdorp PM (1996) Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14(2):239–248

    Article  PubMed  CAS  Google Scholar 

  • Constantinou M, Jhanji V, Tao LW, Vajpayee RB (2009) Clinical review of corneal ulcers resulting in evisceration and enucleation in elderly population. Graefes Arch Clin Exp Ophthalmol 247(10):1389–1393. doi:10.1007/s00417-009-1111-9

    Article  PubMed  Google Scholar 

  • Daniels JT, Dart JKG, Tuft SJ, Khaw PT (2001) Corneal stem cells in review. Wound Repair Regen 9(6):483–494

    Article  PubMed  CAS  Google Scholar 

  • Di Iorio E, Barbaro V, Ruzza A, Ponzin D, Pellegrini G, De Luca M (2005) Isoforms of {Delta}Np63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci USA 102(27):9523–9528. doi:10.1073/pnas.0503437102

    Article  PubMed  Google Scholar 

  • Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A (2005) Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 89(5):529–532

    Article  PubMed  CAS  Google Scholar 

  • Gago N, Perez-Lopez V, Sanz-Jaka JP, Cormenzana P, Eizaguirre I, Bernad A, Izeta A (2009) Age-dependent depletion of human skin-derived progenitor cells. Stem Cells 27(5):1164–1172. doi:10.1002/stem.27

    Article  PubMed  CAS  Google Scholar 

  • Geiger H, Koehler A, Gunzer M (2007) Stem cells, aging, niche, adhesion and Cdc42—a model for changes in cell–cell interactions and hematopoietic stem cell aging. Cell Cycle 6(8):884–887

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim YW, Boase DL, Cree IA (2009) Epidemiological characteristics, predisposing factors and microbiological profiles of infectious corneal ulcers: the Portsmouth corneal ulcer study. Br J Ophthalmol 93(10):1319–1324. doi:10.1136/bjo.2008.151167

    Article  PubMed  CAS  Google Scholar 

  • Kanski J (2003) Clinical ophthalmology: a systematic approach, 5th edn. Butterworth-Heinemann, Boston

    Google Scholar 

  • Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B, Kempermann G (2010) Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. Plos One 5 (1). doi:10.1371/journal.pone.0008809

  • Krunic D, Moshir S, Greulich-Bode KM, Figueroa R, Cerezo A, Stammer H, Stark HJ, Gray SG, Nielsen KV, Hartschuh W, Boukamp P (2009) Tissue context-activated telomerase in human epidermis correlates with little age-dependent telomere loss. Biochim Biophys Acta-Mol Basis Dis 1792(4):297–308. doi:10.1016/j.bbadis.2009.02.005

    Article  CAS  Google Scholar 

  • Luo J, Daniels SB, Lennington JB, Notti RQ, Conover JC (2006) The aging neurogenic subventricular zone. Aging Cell 5(2):139–152. doi:10.1111/j.1474-9726.2006.00197.x

    Article  PubMed  CAS  Google Scholar 

  • Notara M, Daniels JT (2010) Characterisation and functional features of a spontaneously immortalised human corneal epithelial cell line with progenitor-like characteristics. Brain Res Bull 81(2–3):279–286. doi:10.1016/j.brainresbull.2009.08.009

    Article  PubMed  CAS  Google Scholar 

  • Notara M, Haddow DB, MacNeilss S, Daniels JT (2007) A xenobiotic-free culture system for human limbal epithelial stem cells. Regen Med 2:919–927. doi:10.2217/17460751.2.6.919

    Article  PubMed  CAS  Google Scholar 

  • O’Connor MS, Carlson ME, Conboy IM (2009) Differentiation rather than aging of muscle stem cells abolishes their telomerase activity. Biotechnol Prog 25(4):1130–1137. doi:10.1002/btpr.223

    Article  PubMed  Google Scholar 

  • Oakley EJ, Van Zant G (2010) Age-related changes in niche cells influence hematopoietic stem cell function. Cell Stem Cell 6(2):93–94. doi:10.1016/j.stem.2010.01.008

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Chen SY, Weng CJ, Call G, Zhu DX, Tang H, Zhang N, Xie T (2007) Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 1(4):458–469

    Article  PubMed  CAS  Google Scholar 

  • Parmar P, Salman A, Kalavathy CM, Kaliamurthy J, Thomas PA, Jesudasan CAN (2006) Microbial keratitis at extremes of age. Cornea 25(2):153–158

    Article  PubMed  Google Scholar 

  • Pearce DJ, Anjos-Afonso F, Ridler CM, Eddaoudi A, Bonnet D (2007) Age-dependent increase in side population distribution within hematopoiesis: implications for our understanding of the mechanism of aging. Stem Cells 25(4):828–835. doi:10.1634/stemcells.2006-0405

    Article  PubMed  CAS  Google Scholar 

  • Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447(7145):725–U715. doi:10.1038/nature05862

    Article  PubMed  CAS  Google Scholar 

  • Ryu BY, Orwig KE, Oatley JM, Avarbock MR, Brinster RL (2006) Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells 24(6):1505–1511. doi:10.1634/stemcells.2005-0580

    Article  PubMed  CAS  Google Scholar 

  • Schlotzer-Schrehardt U, Kruse FE (2005) Identification and characterization of limbal stem cells. Exp Eye Res 81:247–264

    Article  PubMed  Google Scholar 

  • Shortt AJ, Secker GA, Munro PM, Khaw PT, Tuft SJ, Daniels JT (2007a) Characterization of the limbal epithelial stem cell niche: Novel imaging techniques permit in-vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 25:1402–1409

    Article  PubMed  Google Scholar 

  • Shortt AJ, Secker GA, Munro PM, Khaw PT, Tuft SJ, Daniels JT (2007b) Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 25(6):1402–1409. doi:10.1634/stemcells.2006-0580

    Article  PubMed  Google Scholar 

  • Shortt AJ, Secker GA, Notara MD, Limb GA, Khaw PT, Tuft SJ, Daniels JT (2007c) Transplantation of ex-vivo cultured limbal epithelial stem cells—a review of current techniques and clinical results. Surv Ophthalmol 52:483–502

    Article  PubMed  Google Scholar 

  • Shortt AJ, Tuft SJ, Daniels JT (2010) Ex vivo cultured limbal epithelial transplantation. A clinical perspective. Ocul Surf 8(2):80–90

    Article  PubMed  Google Scholar 

  • Stepp MA, Zieske JD (2005) The corneal epithelial stem cell niche. Ocul Surf 3(1):15–26

    Article  PubMed  Google Scholar 

  • Tseng SCG (1996) Regulation and clinical implications of corneal epithelial stem cells. Mol Biol Rep 23(1):47–58

    Article  PubMed  CAS  Google Scholar 

  • Umemoto T, Yamato M, Nishida K, Yang J, Tano Y, Okano T (2006) Limbal epithelial side-population cells have stem cell-like properties, including quiescent state. Stem Cells 24(1):86–94. doi:10.1634/stemcells.2005-0064

    Article  PubMed  Google Scholar 

  • van der Meulen IJ, van Rooij D, Nieuwendaal CP, Van Cleijnenbreugel H, Geerards AJ, Remeijer L (2008) Age-related risk factors, culture outcomes, and prognosis in patients admitted with infectious keratitis to two Dutch tertiary referral centers. Cornea 27(5):539–544

    Article  PubMed  Google Scholar 

  • Wagner W, Horn P, Bork S, Ho AD (2008) Aging of hematopoietic stem cells is regulated by the stem cell niche. Exp Gerontol 43(11):974–980. doi:10.1016/j.exger.2008.04.007

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Nishida K, Yamato M, Umemoto T, Sumide T, Yamamoto K, Maeda N, Watanabe H, Okano T, Tano Y (2004) Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett 565:6–20

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Shimmura S, Kawakita T, Miyashita H, Den S, Shimazaki J, Tsubota K (2006) Cytokeratin 15 can be used to identify the limbal phenotype in normal and diseased ocular surfaces. Invest Ophthalmol Vis Sci 47(11):4780–4786. doi:10.1167/iovs.06-0574

    Article  PubMed  Google Scholar 

  • Zahidov ST, Hohlov AN, Malolina EA, Kulibin AY, Marshak TL (2010) Ageing of the spermatogenesis system. Biol Bull 37(1):10–17. doi:10.1134/s1062359010010024

    Article  CAS  Google Scholar 

  • Zhao R, Xuan Y, Li XH, Xi RW (2008) Age-related changes of germline stem cell activity, niche signaling activity and egg production in Drosophila. Aging Cell 7(3):344–354. doi:10.1111/j.1474-9726.2008.00379.x

    Article  PubMed  CAS  Google Scholar 

  • Zheng TY, Xu JJ (2008) Age-related changes of human limbus on in vivo confocal microscopy. Cornea 27(7):782–786

    Article  PubMed  Google Scholar 

  • Zheng W, Wang S, Ma DD, Tang L, Duan YZ, Jin Y (2009) Loss of proliferation and differentiation capacity of aged human periodontal ligament stem cells and rejuvenation by exposure to the young extrinsic environment. Tissue Eng Part A 15(9):2363–2371. doi:10.1089/ten.tea.2008.0562

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Medical Research Council, NIHR BRC for Ophthalmology, Moorfields Eye Hospital & the UCL Institute of Ophthalmology as well as the Engineering and Physical Sciences Research Council for their support and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Notara.

About this article

Cite this article

Notara, M., Shortt, A.J., O’Callaghan, A.R. et al. The impact of age on the physical and cellular properties of the human limbal stem cell niche. AGE 35, 289–300 (2013). https://doi.org/10.1007/s11357-011-9359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9359-5

Keywords

Navigation