Skip to main content
Log in

Aging and physical mobility in group-housed Old World monkeys

  • Published:
AGE Aims and scope Submit manuscript

Abstract

While indices of physical mobility such as gait speed are significant predictors of future morbidity/mortality in the elderly, mechanisms of these relationships are not understood. Relevant animal models of aging and physical mobility are needed to study these relationships. The goal of this study was to develop measures of physical mobility including activity levels and gait speed in Old World monkeys which vary with age in adults. Locomotor behaviors of 21 old (\( \overline x \) = 20 yoa) and 24 young (\( \overline x \) = 9 yoa) socially housed adult females of three species were recorded using focal sample and ad libitum behavior observation methods. Self-motivated walking speed was 17% slower in older than younger adults. Likewise, young adults climbed more frequently than older adults. Leaping and jumping were more common, on average, in young adults, but this difference did not reach significance. Overall activity levels did not vary significantly by age, and there were no significant age by species interactions in any of these behaviors. Of all the behaviors evaluated, walking speed measured in a simple and inexpensive manner appeared most sensitive to age and has the added feature of being least affected by differences in housing characteristics. Thus, walking speed may be a useful indicator of decline in physical mobility in nonhuman primate models of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abellan van Kan G, Rolland Y, Andrieu S et al (2009) Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J Nutr Health Aging 13(10):881–889. doi:10.1007/s12603-009-0246-z

    Article  PubMed  CAS  Google Scholar 

  • Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49:227–267

    Article  PubMed  CAS  Google Scholar 

  • Bannon MJ, Poosch MS, Xia Y, Goebel DJ, Cassin B, Kapatos G (1992) Dopamine transporter mRNA content in human substantia nigra decreases precipitously with age. Proc Natl Acad Sci U S A 89(15):7095–7099, PubMed Central PMCID: PMC49652

    Article  PubMed  CAS  Google Scholar 

  • Barger LK, Hoban-Higgins TM, Fuller CA (2008) Assessment of circadian rhythms throughout the menstrual cycle of female rhesus monkeys. Am J Primatol 70(1):19–25. doi:10.1002/ajp.20451

    Article  PubMed  CAS  Google Scholar 

  • Black A, Tilmont EM, Handy AM et al (2001) A nonhuman primate model of age-related bone loss: a longitudinal study in male and premenopausal female rhesus monkeys. Bone 28(3):295–302. doi:10.1016/S8756-3282(00)00452-X

    Article  PubMed  CAS  Google Scholar 

  • Cass WA, Grondin R, Andersen AH et al (2007) Iron accumulation in the striatum predicts aging-related decline in motor function in rhesus monkeys. Neurobiol Aging 28(2):258–271. doi:10.1016/j.neurobiolaging.2005.12.010

    Article  PubMed  CAS  Google Scholar 

  • Cesari M, Kritchevsky SB, Penninx BW et al (2005) Prognostic value of usual gait speed in well-functioning older people—results from the Health, Aging and Body Composition Study. J Am Geriatr Soc 53(10):1675–1680. doi:10.1111/j.1532-5415.2005.53501.x

    Article  PubMed  Google Scholar 

  • Chavez AO, Gastaldelli A, Guardado-Mendoza R et al (2009) Predictive models of insulin resistance derived from simple morphometric and biochemical indices related to obesity and the metabolic syndrome in baboons. Cardiovasc Diabetol 8:22. doi:10.1186/1475-2840-8-22, PMCID: PMC2674590

    Article  PubMed  Google Scholar 

  • Colman RJ, McKiernan SH, Aiken JM, Weindruch R (2005) Muscle mass loss in rhesus monkeys: age of onset. Exp Gerontol 40:573–581. doi:10.1015/j.exger.2005.05.001

    Article  PubMed  Google Scholar 

  • Cooper R, Kuh D, Hardy R, Mortality Review Group, FALCon and HALCyon Study Teams (2010) Objectively measured physical capability levels and mortality: systematic review and meta-analysis. BMJ 341:c4467. doi:10.1136/bmj.c4467, PMCID: PMC2938886

    Article  PubMed  Google Scholar 

  • Courtine G, Roy RR, Hodgson J et al (2005) Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus). J Neurophysiol 93(6):3127–3145. doi:10.1152/jn.01073.2004

    Article  PubMed  Google Scholar 

  • Emborg ME, Ma SY, Mufson EJ et al (1998) Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J Comp Neurol 401(2):253–265. doi:10.1002/(SICI)1096-9861(19981116)401:2<253::AID-CNE7>3.0.CO;2-X

    Article  PubMed  CAS  Google Scholar 

  • Era P, Heikkinen E (1985) Postural sway during standing and unexpected disturbance of balance in random samples of men of different ages. J Gerontol 40(3):287–295. doi:10.1093/geronj/40.3.287

    PubMed  CAS  Google Scholar 

  • Fears SC, Melega WP, Service SK et al (2009) Identifying heritable brain phenotypes in an extended pedigree of vervet monkeys. J Neurosci 29(9):2867–2875. doi:10.1523/JNEUROSCI.5153-08.2009, PMCID: PMC2716293

    Article  PubMed  CAS  Google Scholar 

  • Ferrucci L, Penninx BW, Leveille SG et al (2000) Characteristics of nondisabled older persons who perform poorly in objective tests of lower extremity function. J Am Geriatr Soc 48(9):1102–1110

    PubMed  CAS  Google Scholar 

  • Freimer NB, Service SK, Ophoff RA et al (2007) A quantitative trait locus for variation in dopamine metabolism mapped in a primate model using reference sequences from related species. Proc Natl Acad Sci U S A 104(40):15811–15816. doi:10.1073/pnas.0707640104, PMCID: PMC1987389

    Article  PubMed  Google Scholar 

  • Gallagher M, Rapp PR (1997) The use of animal models to study the effects of aging on cognition. Annu Rev Psychol 48:339–370. doi:10.1146/annurev.psych.48.1.130

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt GA, Cass WA, Henson M et al (1995) Age-related changes in potassium-evoked overflow of dopamine in the striatum of the rhesus monkey. Neurobiol Aging 16(6):939–946. doi:10.1016/019704580(95)92913-6

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt GA, Cass WA, Yi A, Zhang Z, Gash DM (2002) Changes in somatodendritic but not terminal dopamine regulation in aged rhesus monkeys. J Neurochem 80(1):168–477. doi:10.1046/j.0022-3042.2001.00684.x

    Article  PubMed  CAS  Google Scholar 

  • Gillette RL, Angle TC (2008) Recent developments in canine locomotor analysis: a review. Vet J 178(2):165–176. doi:10.1016/j.tvjl.2008.01.009

    Article  PubMed  Google Scholar 

  • Guralnik JM, Simonsick EM, Ferrucci L et al (1994) A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 49(2):M85–M94. doi:10.1093/geronj/49.2.M85

    PubMed  CAS  Google Scholar 

  • Guralnik JM, Ferrucci L, Pieper CF et al (2000) Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci 55(4):M221–M231. doi:10.1093/gerona/55.4.M221

    Article  PubMed  CAS  Google Scholar 

  • Himann JE, Cunningham DA, Rechnitzer PA, Paterson DH (1988) Age-related changes in speed of walking. Med Sci Sports Exerc 20(2):161–166

    Article  PubMed  CAS  Google Scholar 

  • Irwin I, DeLanney LE, McNeill T et al (1994) Aging and the nigrostriatal dopamine system: a non-human primate study. Neurodegeneration 3(4):251–265, PubMed PMID: 7531106

    PubMed  CAS  Google Scholar 

  • Jerome CP (2004) Hormonal therapies and osteoporosis. ILAR J 45:170–178

    PubMed  CAS  Google Scholar 

  • Kastman EK, Willette AA, Coe CL et al (2010) A calorie-restricted diet decreases brain iron accumulation and preserves motor performance in old rhesus monkeys. J Neurosci 30(23):7940–7947. doi:10.1523/JNEUROSCI.0835-10.2010

    Article  PubMed  CAS  Google Scholar 

  • Kaufman D, Smith ELP, Gohil BC et al (2005) Early appearance of metabolic syndrome in socially reared bonnet macaques. J Clin Endocrinol Metab 90(1):404–408. doi:10.1210/jc.2004-0452

    Article  PubMed  CAS  Google Scholar 

  • Kayo T, Allison DB, Weindruch R, Prolla TA (2001) Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc Natl Acad Sci U S A 98:5093–5098. doi:10.1073/pnas.081061898, PMCID: PMC33169

    Article  PubMed  CAS  Google Scholar 

  • Kemnitz JW (1984) Obesity in macaques: spontaneous and induced. Adv Vet Sci Comp Med 28:81–114

    PubMed  CAS  Google Scholar 

  • Kish SJ, Robitaille Y, el-Awar M et al (1992) Striatal monoamine neurotransmitters and metabolites in dominantly inherited olivopontocerebellar atrophy. Neurology 42(8):1573–1577, PubMed PMID: 1353622

    Article  PubMed  CAS  Google Scholar 

  • Kulstad JJ, McMillan PJ, Leverenz JB et al (2005) Effects of chronic glucocorticoid administration on insulin-degrading enzyme and amyloid-beta peptide in the aged macaque. J Neuropathol Exp Neurol 64(2):139–146

    PubMed  CAS  Google Scholar 

  • Marsh AP, Eggebeen JD, Kornegay JN, Markert CD, Childers MK (2010) Kinematics of gait in golden retriever muscular dystrophy. Neuromuscul Disord 20(1):16–20. doi:10.1016/j.nmd.2009.10.007

    Article  PubMed  Google Scholar 

  • Newman AB, Simonsick EM, Naydeck BL et al (2006) Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. JAMA 295(17):2018–2026. doi:10.1001/jama.295.17.2018

    Article  PubMed  CAS  Google Scholar 

  • Ogihara N, Makishima H, Nakatsukasa M (2010) Three-dimensional musculoskeletal kinematics during bipedal locomotion in the Japanese macaque, reconstructed based on an anatomical model-matching method. J Hum Evol 58(3):252–261. doi:10.1016/j.jhevol.2009.11.009

    Article  PubMed  Google Scholar 

  • Oikawa N, Kimura N, Yanagisawa K (2010) Alzheimer-type tau pathology in advanced aged nonhuman primate brains harboring substantial amyloid deposition. Brain Res 1315:137–149. doi:10.1016/j.brainres.2009.12.005

    Article  PubMed  CAS  Google Scholar 

  • Rao AJ, Ramesh V, Ramachadra SG, Krishnamurthy HN, Ravindranath N, Moudgal NR (1998) Growth and reproductive parameter of bonnet monkey (Macaca radiata). Primates 39(1):97–107

    Article  Google Scholar 

  • Samson MM, Crowe A, de Vreede PL, Dessens JA, Duursma SA, Verhaar HJ (2001) Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging (Milano) 13(1):16–21

    CAS  Google Scholar 

  • Shively CA, Register TC, Clarkson TB (2009) Social stress, visceral obesity, and coronary artery atherosclerosis in female primates. Obesity (Silver Spring) 17(8):1513–1520. doi:10.1038/oby.2009.74

    Article  Google Scholar 

  • Shumway-Cook A, Guralnik JM, Phillips CL et al (2007) Age-associated declines in complex walking task performance: the Walking InCHIANTI toolkit. J Am Geriatr Soc 55(1):58–65. doi:10.1111/j.1532-5415.2006.00962.x

    Article  PubMed  Google Scholar 

  • Syddall H, Roberts HC, Evandrou M, Cooper C, Bergman H, Aihie Sayer A (2010) Prevalence and correlates of frailty among community-dwelling older men and women: findings from the Hertfordshire Cohort Study. Age Ageing 39(2):197–203. doi:10.1093/ageing/afp204

    Article  PubMed  Google Scholar 

  • Voytko ML, Tinkler GP (2004) Cognitive function and its neural mechanisms in nonhuman primate models of aging, Alzheimer disease, and menopause. Front Biosci 9:1899–1914. doi:10.2741/1370

    Article  PubMed  CAS  Google Scholar 

  • Wagner JD, Kavanagh K, Ward GM, Auerbach BJ, Harwood HJ Jr, Kaplan JR (2006) Old World nonhuman primate models of type 2 diabetes mellitus. ILAR J 47(3):259–271

    PubMed  CAS  Google Scholar 

  • Walston J, Fried LP (1999) Frailty and the older man. Med Clin North Am 83(5):1173–1194

    Article  PubMed  CAS  Google Scholar 

  • Walton A, Branham A, Gash DM, Grondin R (2006) Automated video analysis of age-related motor deficits in monkeys using EthoVision. Neurobiol Aging 27(10):1477–1483. doi:10.1016/j.neurobiolaging.2005.08.003

    Article  PubMed  Google Scholar 

  • Weigl R (2005) Longevity of mammals in captivity; from the living collections of the world. Kleine Senckenberg-Reihe 48: Stuttgart

  • Zeng F, Southerland JA, Voll RJ et al (2006) Synthesis and evaluation of two 18F-labeled imidazo[1,2-a]pyridine analogues as potential agents for imaging beta-amyloid in Alzheimer’s disease. Bioorg Med Chem Lett 16(11):3015–3058. doi:10.1016/j.bmcl.2006.02.055

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Andersen A, Smith C, Grondin R, Gerhardt G, Gash D (2000) Motor slowing and parkinsonian signs in aging rhesus monkeys mirror human aging. J Gerontol A Biol Sci Med Sci 55(10):B473–B480

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Pepper Older Americans for Independence Center (P30 AG21332), the Vervet Research Colony (P40 RR019963), R01 AA013973 and intramural grants from the Translational Science Institute and the Primate Center of Wake Forest School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Shively.

About this article

Cite this article

Shively, C.A., Willard, S.L., Register, T.C. et al. Aging and physical mobility in group-housed Old World monkeys. AGE 34, 1123–1131 (2012). https://doi.org/10.1007/s11357-011-9350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9350-1

Keywords

Navigation