Skip to main content
Log in

Glial molecular alterations with mouse brain development and aging: up-regulation of the Kir4.1 and aquaporin-4

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Glial cells, besides participating as passive supporting matrix, are also proposed to be involved in the optimization of the interstitial space for synaptic transmission by tight control of ionic and water homeostasis. In adult mouse brain, inwardly rectifying K+ (Kir4.1) and aquaporin-4 (AQP4) channels localize to astroglial endfeets in contact with brain microvessels and glutamate synapses, optimizing clearance of extracellular K+ and water from the synaptic layers. However, it is still unclear whether there is an age-dependent difference in the expressions of Kir4.1 and AQP4 channels specifically during postnatal development and aging when various marked changes occur in brain and if these changes region specific. RT-PCR and immunoblotting was conducted to compare the relative expression of Kir4.1 and AQP4 mRNA and protein in the early and mature postnatal (0-, 15-, 45-day), adult (20-week), and old age (70-week) mice cerebral and cerebellar cortices. Expressions of Kir4.1 and AQP4 mRNA and protein are very low at 0-day. A pronounced and continuous increase was observed by mature postnatal ages (15-, 45-days). However, in the 70-week-old mice, expressions are significantly up-regulated as compared to 20-week-old mice. Both genes follow the same age-related pattern in both cerebral and cerebellar cortices. The time course and expression pattern suggests that Kir4.1 and AQP4 channels may play an important role in brain K+ and water homeostasis in early postnatal weeks after birth and during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbour B, Hausser M (1997) Intersynaptic diffusion of neurotransmitter. Trends Neurosci 20:377–384

    Article  PubMed  CAS  Google Scholar 

  • Binder DK, Oshio K, Ma T, Verkman AS (2004) Increased seizure threshold in mice lacking aquaporin-4 water channels. Neuroreport 15:259–262

    Article  PubMed  CAS  Google Scholar 

  • Binder DK, Yao X, Zador Z, Sick TJ, Verkman AS, Manley GT (2006) Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53:631–636

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Butt AM, Kalsi A (2006) Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med 10:33–44

    Article  PubMed  CAS  Google Scholar 

  • Connors BW, Ransom BR, Kunis DM, Gutnick MJ (1982) Activity-dependent K+ accumulation in the developing rat optic nerve. Science 216:1341–1343

    Article  PubMed  CAS  Google Scholar 

  • Dibaj P, Kaiser M, Hirrlinger J, Kirchhoff F, Neusch C (2007) Kir4.1 channels regulate swelling of astroglial processes in experimental spinal cord edema. J Neurochem 103:2620–2628

    PubMed  CAS  Google Scholar 

  • Dietzel I, Heinemann U, Hofmeier G, Lux HD (1980) Transient chaneges in the size of the extracellular space in the sensorymotor cortex of the cats in relation to stimulus-induced changes in the potassium concentration. Exp Brain Res 40:432–439

    Article  PubMed  CAS  Google Scholar 

  • Erulkar SD, Weight FF (1977) Extracellular potassium and transmitter release at the giant synapse of the squid. J Physiol 226:209–218

    Google Scholar 

  • Freeman MR (2010) Specification and morphogenesis of astrocytes. Science 330:774–778

    Article  PubMed  CAS  Google Scholar 

  • Gage PW, Quastel DMJ (1965) Dual effect of potassium on transmitter release. Nature 206:625–626

    Article  PubMed  CAS  Google Scholar 

  • Gardner-Medwin AR (1983) A study of the mechanisms by which potassium moves through brain tissue in the rat. J Physiol 335:353–374

    PubMed  CAS  Google Scholar 

  • Hayakawa N, Kato H, Araki T (2007) Age-related changes of astorocytes, oligodendrocytes and microglia in the mouse hippocampal CA1 sector. Mech Ageing Dev 128:311–316

    Article  PubMed  CAS  Google Scholar 

  • Henderson G, Tomlinson BE, Gibson PH (1980) Cell counts in human cerebral cortex in normal adults throughout life using an image analyzing computer. J Neurol Sci 46:113–136

    Article  PubMed  CAS  Google Scholar 

  • Holthoff K, Witte OW (1996) Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space. J Neurosci 16:2740–2749

    PubMed  CAS  Google Scholar 

  • Hsu MS, Seldin M, Lee DJ, Seifert G, Steinhäuser BDK (2011) Laminar-specific and developmental expression of aquaporin-4 in the mouse hippocampus. Neuroscience 178:21–32

    Article  PubMed  CAS  Google Scholar 

  • Kanungo MS (1994) Genes and aging. Cambridge University Press, Cambridge/New York, pp 167–245

    Book  Google Scholar 

  • Kong H, Fan Y, Xie J, Ding J, Sha L, Shi X, Sun X, Hu G (2008) AQP4 knockout impairs proliferation, migration and neuronal differentiation of adult neural stem cells. J Cell Sci 121:4029–4036

    Article  PubMed  CAS  Google Scholar 

  • Kullmann DM, Asztely F (1998) Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci 21:8–14

    Article  PubMed  CAS  Google Scholar 

  • Lehmenkühler A, Sykova E, Svoboda J, Zilles K, Nicholson C (1993) Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience 55:339–351

    Article  PubMed  Google Scholar 

  • Li J, Verkman AS (2001) Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem 276:31233–31237

    Article  PubMed  CAS  Google Scholar 

  • Li J, Patil RV, Verkman AS (2002) Mildly abnormal retinal function in transgenic mice without müllar cell aquaporin-4 water channels. Invest Ophthalmol Vis Sci 43:573–579

    PubMed  Google Scholar 

  • Lombroso CT (1996) Neonatal seizures: a clinician's overview. Brain Dev 18:1–28

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Kocsis JD, Ransom BR, Waxman SG (1981) Modulation of parallel fiber excitability by postsynaptically mediated changes in extracellular potassium. Science 214:339–341

    Article  PubMed  CAS  Google Scholar 

  • Michlewska MO, Jiang H, Aschner M, Albrecht J (2010) Gain of function of Kir4.1 channel increases cell resistance to changes of potassium fluxes and cell volume evoked by ammonia and hypoosmotic stress. Pharmacol Rep 62:1237–1242

    Google Scholar 

  • Modi PK, Kanungo MS (2010) Age-dependent expression of S100β in the brain of mice. Cell Mol Neurobiol 30:709–716

    Article  PubMed  CAS  Google Scholar 

  • Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129:905–913

    Article  PubMed  CAS  Google Scholar 

  • Neeley JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME (2001) Syntrophin-dependent expression and localization of aquaporin-4 water channel protein. Proc Natl Acad Sci USA 98:14108–14113

    Article  Google Scholar 

  • Neusch C, Rozengurt N, Jacobs RE, Lester HA, Kofuji P (2001) Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci 21:5429–5438

    PubMed  CAS  Google Scholar 

  • Niermann H, Amiry-Moghaddam M, Holthoff K, Witte OW, Ottersen OP (2001) A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci 21:3045–3051

    PubMed  CAS  Google Scholar 

  • Padmawar P, Yao X, Bloch O, Manley GT, Verkman AS (2005) K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nat Methods 2:825–827

    Article  PubMed  CAS  Google Scholar 

  • Pannicke T, Iandiev I, Uckermann O, Biedermann B, Kutzera F, Wiedemann P, Wolburg H, Reichenbach A, Bringmann A (2004) A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Mol Cell Neurosci 26:493–502

    Article  PubMed  CAS  Google Scholar 

  • Papadopaulos MC, Koumenis IL, Yuan TY, Giffard RG (1997) Increased vulnerability of astrocytes to oxidative injury with age despite constant antioxidant defenses. Neuroscience 82:915–925

    Article  Google Scholar 

  • Ransom BR, Yamate CL, Connors BW (1985) Activity-dependent shrinkage of extracellular space in rat optic nerve: a developmental study. J Neurosci 5:525–532

    Google Scholar 

  • Rice D, Barone SJ (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Heal Perspect 108:511–533

    Google Scholar 

  • Roberts EL, Chih CP (1995) Age-related alterations in energy metabolism contribute to the increased vulnerability of the aging brain to anoxic damage. Brain Res 678:83–90

    Article  PubMed  CAS  Google Scholar 

  • Roberts EL, Rosenthal M, Slick TJ (1990) Age-related modifications of potassium homeostasis and synaptic transmission during and after anoxia in rat hippocampal slices. Brain Res 514:111–118

    Article  PubMed  CAS  Google Scholar 

  • Scheibel ME, Scheibel AB (1975) Structural changes in the aging brain. In: Brody H, Herman D, Ordy JM (eds) Aging, vol. 1. Raven Press, New York, pp 11–37

    Google Scholar 

  • Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896

    Article  PubMed  CAS  Google Scholar 

  • Sykova E, Mazel T, Simonova Z (1998) Diffusion constraints and neuron–glia interaction during aging. Exp Gerontol 33:837–851

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Sakurada N, Kanno S, Ando M, Oku N (2008) Vulnerability to seizure induced by dyshomeostasis in the hippocampus in aged rats. J Heal Sci 54:37–42

    Article  CAS  Google Scholar 

  • Takumi Y, Nagelhus EA, Eidet J, Matsubara A, Usami S, Shinkawa H, Nielsen S, Ottersen OP (1998) Select types of supporting cell in the inner ear express aquaporin-4 water channel protein. Eur J Neurosci 10:3584–3595

    Article  PubMed  CAS  Google Scholar 

  • Venero JL, Vizuete ML, Machado A, Cano J (2001) Aquaporins in the central nervous system. Prog Neurobiol 63:321–336

    Article  PubMed  CAS  Google Scholar 

  • Wen H, Nagelhus EA, Amiry-Moghaddam M, Agre P, Ottersen OP, Nielsen S (1999) Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel. Eur J Neurosci 11:935–945

    Article  PubMed  CAS  Google Scholar 

  • Yasuda T, Bartlett PF, Adams DJ (2008) Kir and Kv channels regulate electrical properties and proliferation of adult neural precursor cells. Mol Cell Neurosci 37:284–297

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Department of Science & Technology (DST), Govt. of India, to M.S.K. RKG thanks the Council of Scientific and Industrial Research (CSIR), Govt. of India for a Junior and then a Senior Research Fellowship (CSIR Award No. File No: 09/013 (0111) 2007-EMR I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajaneesh Kumar Gupta.

Additional information

Madhusudan Kanungo, corresponded the paper, passed away on 26-July-2011. Further communication and revision of the paper is carried forward by the first author

About this article

Cite this article

Gupta, R.K., Kanungo, M. Glial molecular alterations with mouse brain development and aging: up-regulation of the Kir4.1 and aquaporin-4. AGE 35, 59–67 (2013). https://doi.org/10.1007/s11357-011-9330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9330-5

Keywords

Navigation