Skip to main content

Advertisement

Log in

Skeletal muscle contractile function and neuromuscular performance in Zmpste24 −/− mice, a murine model of human progeria

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Human progeroid syndromes and premature aging mouse models present as segmental, accelerated aging because some tissues and not others are affected. Skeletal muscle is detrimentally changed by normal aging but whether it is an affected tissue in progeria has not been resolved. We hypothesized that mice which mimic Hutchinson–Gilford progeria syndrome would exhibit age-related alterations of skeletal muscle. Zmpste24 −/− and Zmpste24 +/+ littermates were assessed for skeletal muscle functions, histo-morphological characteristics, and ankle joint mechanics. Twenty-four-hour active time, ambulation, grip strength, and whole body tension were evaluated as markers of neuromuscular performance, each of which was at least 33% lower in Zmpste24 −/− mice compared with littermates (p < 0.06). Contractile capacity of the posterior leg muscles were not affected in Zmpste24 −/− mice, but muscles of the anterior leg were 30–90% weaker than those of Zmpste24 +/+ mice (p < 0.01). Leg muscles were 32–47% smaller in the Zmpste24 −/− mice and contained ~60% greater collagen relative to littermates (p < 0.01). Soleus and extensor digitorum longus muscles of Zmpste24 −/− mice had excessive myonuclei and altered fiber size distributions but, otherwise, appeared normal. Ankle range of motion was 70% lower and plantar- and dorsiflexion passive torques were nearly 3-fold greater in Zmpste24 −/− than Zmpste24 +/+ mice (p ≤ 0.01). The combined factors of muscle atrophy, collagen accumulation, and perturbed joint mechanics likely contributed to poor neuromuscular performance and selective muscle weakness displayed by Zmpste24 −/−mice. In summary, these characteristics are similar to those of aged mice indicating accelerated aging of skeletal muscle in progeria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

EDL:

Extensor digitorum longus

HGPS:

Hutchinson–Gilford progeria syndrome

P o :

Maximal isometric tetanic force

ROM:

Range of motion

References

  • Baltgalvis KA, Call JA, Nikas JB, Lowe DA (2009) Effects of prednisolone on skeletal muscle contractility in mdx mice. Muscle Nerve 40:443–454

    Article  PubMed  CAS  Google Scholar 

  • Bergo MO, Gavino B, Ross J, Schmidt WK, Hong C, Kendall LV, Mohr A, Meta M, Genant H, Jiang Y, Wisner ER, Van Bruggen N, Carano RA, Michaelis S, Griffey SM, Young SG (2002) Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc Natl Acad Sci U S A 99:13049–13054

    Article  PubMed  CAS  Google Scholar 

  • Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA, Duboc D, Fardeau M, Toniolo D, Schwartz K (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery–Dreifuss muscular dystrophy. Nat Genet 21:285–288

    Article  PubMed  CAS  Google Scholar 

  • Brooks SV, Faulkner JA (1988) Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404:71–82

    PubMed  CAS  Google Scholar 

  • Call JA, McKeehen JN, Novotny SA, Lowe DA (2010) Progressive resistance voluntary wheel running in the mdx mouse. Muscle Nerve 42:871–880

    Article  PubMed  CAS  Google Scholar 

  • Capell BC, Collins FS (2006) Human laminopathies: nuclei gone genetically awry. Nat Rev Genet 7:940–952

    Article  PubMed  CAS  Google Scholar 

  • Carlson CG, Rutter J, Bledsoe C, Singh R, Hoff H, Bruemmer K, Sesti J, Gatti F, Berge J, McCarthy L (2010) A simple protocol for assessing inter-trial and inter-examiner reliability for two noninvasive measures of limb muscle strength. J Neurosci Methods 186:226–230

    Article  PubMed  Google Scholar 

  • De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Levy N (2003) Lamin a truncation in Hutchinson–Gilford progeria. Science 300:2055

    Article  PubMed  Google Scholar 

  • Emery AE (2002) The muscular dystrophies. Lancet 359:687–695

    Article  PubMed  CAS  Google Scholar 

  • Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423:293–298

    Article  PubMed  CAS  Google Scholar 

  • Faulkner JA, Brooks SV, Zerba E (1995) Muscle atrophy and weakness with aging: contraction-induced injury as an underlying mechanism. J Gerontol A Biol Sci Med Sci 50(Spec No):124–129

    PubMed  Google Scholar 

  • Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, De Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, Onder G, Papanicolaou D, Rolland Y, Rooks D, Sieber C, Souhami E, Verlaan S, Zamboni M (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12(4):249–256

    Article  PubMed  Google Scholar 

  • Fong LG, Ng JK, Meta M, Cote N, Yang SH, Stewart CL, Sullivan T, Burghardt A, Majumdar S, Reue K, Bergo MO, Young SG (2004) Heterozygosity for LMNA deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. Proc Natl Acad Sci U S A 101:18111–18116

    Article  PubMed  CAS  Google Scholar 

  • Franklyn PP (1976) Progeria in siblings. Clin Radiol 27:327–333

    Article  PubMed  CAS  Google Scholar 

  • Frock RL, Kudlow BA, Evans AM, Jameson SA, Hauschka SD, Kennedy BK (2006) Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev 20:486–500

    Article  PubMed  CAS  Google Scholar 

  • Garlich MW, Baltgalvis KA, Call JA, Dorsey LL, Lowe DA (2010) Plantarflexion contracture in the mdx mouse. Am J Phys Med Rehabil 89(12):976–985

    Article  PubMed  Google Scholar 

  • Gordon LB, McCarten KM, Giobbie-Hurder A, Machan JT, Campbell SE, Berns SD, Kieran MW (2007) Disease progression in Hutchinson-Gilford progeria syndrome: impact on growth and development. Pediatrics 120:824–833

    Article  PubMed  Google Scholar 

  • Grattan MJ, Kondo C, Thurston J, Alakija P, Burke BJ, Stewart C, Syme D, Giles WR (2005) Skeletal and cardiac muscle defects in a murine model of Emery–Dreifuss muscular dystrophy. Novartis Found Symp 264:118–133, discussion 133–119, 227–130

    Article  PubMed  CAS  Google Scholar 

  • Greising SM, Baltgalvis KA, Kosir AM, Moran AL, Warren GL, Lowe DA (2011) Estradiol's beneficial effect on murine muscle function is independent of muscle activity. J Appl Physiol 110:109–115

    Article  PubMed  CAS  Google Scholar 

  • Halaschek-Wiener J, Brooks-Wilson A (2007) Progeria of stem cells: stem cell exhaustion in Hutchinson–Gilford progeria syndrome. J Gerontol A Biol Sci Med Sci 62:3–8

    Article  PubMed  Google Scholar 

  • Hamer L, Kaplan F, Fallon M (1988) The musculoskeletal manifestations of progeria. A literature review. Orthopedics 11:763–769

    PubMed  CAS  Google Scholar 

  • Hennekam RC (2006) Hutchinson–Gilford progeria syndrome: review of the phenotype. Am J Med Genet A 140:2603–2624

    PubMed  Google Scholar 

  • Ingram DK (2000) Age-related decline in physical activity: generalization to nonhumans. Med Sci Sports Exerc 32:1623–1629

    Article  PubMed  CAS  Google Scholar 

  • Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50:889–896

    Article  PubMed  Google Scholar 

  • Josephson RK (1993) Contraction dynamics and power output of skeletal muscle. Annu Rev Physiol 55:527–546

    Article  PubMed  CAS  Google Scholar 

  • Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD, Stewart CL, Lee RT (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113:370–378

    PubMed  CAS  Google Scholar 

  • Landisch RM, Kosir AM, Nelson SA, Baltgalvis KA, Lowe DA (2008) Adaptive and nonadaptive responses to voluntary wheel running by mdx mice. Muscle Nerve 38:1290–1303

    Article  PubMed  Google Scholar 

  • Leung GK, Schmidt WK, Bergo MO, Gavino B, Wong DH, Tam A, Ashby MN, Michaelis S, Young SG (2001) Biochemical studies of Zmpste24-deficient mice. J Biol Chem 276:29051–29058

    Article  PubMed  CAS  Google Scholar 

  • Macnamara BG, Farn KT, Mitra AK, Lloyd JK, Fosbrooke AS (1970) Progeria. Case report with long-term studies of serum lipids. Arch Dis Child 45:553–560

    Article  PubMed  CAS  Google Scholar 

  • Maraldi NM, Capanni C, Del Coco R, Squarzoni S, Columbaro M, Mattioli E, Lattanzi G, Manzoli FA (2011) Muscular laminopathies: role of prelamin A in early steps of muscle differentiation. Adv Enzyme Regul 51(1):246–256

    Article  PubMed  CAS  Google Scholar 

  • Martin GM (1990) Segmental and unimodal progeroid syndromes of man. In: Harrison DE (ed) Genetic Effect on Aging Vol II. Telford Press, Caldwell, pp 423–520

    Google Scholar 

  • Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB, Brewer CC, Zalewski C, Kim HJ, Solomon B, Brooks BP, Gerber LH, Turner ML, Domingo DL, Hart TC, Graf J, Reynolds JC, Gropman A, Yanovski JA, Gerhard-Herman M, Collins FS, Nabel EG, Cannon RO 3rd, Gahl WA, Introne WJ (2008) Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 358:592–604

    Article  PubMed  CAS  Google Scholar 

  • Moran AL, Warren GL, Lowe DA (2005) Soleus and EDL muscle contractility across the lifespan of female C57BL/6 mice. Exp Gerontol 40:966–975

    Article  PubMed  CAS  Google Scholar 

  • Moran AL, Warren GL, Lowe DA (2006) Removal of ovarian hormones from mature mice detrimentally affects muscle contractile function and myosin structural distribution. J Appl Physiol 100:548–559

    Article  PubMed  CAS  Google Scholar 

  • Muchir A, Bonne G, van der Kooi AJ, van Meegen M, Baas F, Bolhuis PA, de Visser M, Schwartz K (2000) Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 9:1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Olive M, Harten I, Mitchell R, Beers J, Djabali K, Cao K, Erdos MR, Blair C, Funke B, Smoot L, Gerhard-Herman M, Machan JT, Kutys R, Virmani R, Collins FS, Wight TN, Nabel EG, Gordon LB (2010) Cardiovascular Pathology in Hutchinson-Gilford Progeria: Correlation With the Vascular Pathology of Aging. Arterioscler Thromb Vasc Biol 30:2301–2309

    Article  PubMed  CAS  Google Scholar 

  • Pekovic V, Hutchison CJ (2008) Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat 213:5–25

    Article  PubMed  CAS  Google Scholar 

  • Pendas AM, Zhou Z, Cadinanos J, Freije JM, Wang J, Hultenby K, Astudillo A, Wernerson A, Rodriguez F, Tryggvason K, Lopez-Otin C (2002) Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet 31:94–99

    PubMed  CAS  Google Scholar 

  • Reddy GK, Enwemeka CS (1996) A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem 29:225–229

    Article  PubMed  CAS  Google Scholar 

  • Rivas D, Li W, Akter R, Henderson JE, Duque G (2009) Accelerated features of age-related bone loss in zmpste24 metalloproteinase-deficient mice. J Gerontol A Biol Sci Med Sci 64:1015–1024

    Article  PubMed  Google Scholar 

  • Rodriguez S, Eriksson M (2010) Evidence for the involvement of lamins in aging. Curr Aging Sci 3:81–89

    Article  PubMed  CAS  Google Scholar 

  • Roos MR, Rice CL, Vandervoort AA (1997) Age-related changes in motor unit function. Muscle Nerve 20:679–690

    Article  PubMed  CAS  Google Scholar 

  • Safdar A, Bourgeois JM, Ogborn DI, Little JP, Hettinga BP, Akhtar M, Thompson JE, Melov S, Mocellin NJ, Kujoth GC, Prolla TA, Tarnopolsky MA (2011) Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc Natl Acad Sci 108:4135–4140. doi:10.1073/pnas.1019581108

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10:452–459

    Article  PubMed  CAS  Google Scholar 

  • Stewart CL, Kozlov S, Fong LG, Young SG (2007) Mouse models of the laminopathies. Exp Cell Res 313:2144–2156

    Article  PubMed  CAS  Google Scholar 

  • Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147:913–920

    Article  PubMed  CAS  Google Scholar 

  • Varga R, Eriksson M, Erdos MR, Olive M, Harten I, Kolodgie F, Capell BC, Cheng J, Faddah D, Perkins S, Avallone H, San H, Qu X, Ganesh S, Gordon LB, Virmani R, Wight TN, Nabel EG, Collins FS (2006) Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci U S A 103:3250–3255

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Stephen Young (University of California, Los Angeles) for the gift of Zmpste24 −/− breeders as well as Greg Cochrane, Trevor Keyler, Allison Kosir, Ron McElmurry, and Brandon Peacock for their contributions to this project. The research was supported by the Progeria Research Foundation (J. Tolar) and National Institute of Health grants K02 -AG036827 (D.A. Lowe) and T32-AR07612 (J.A. Call).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn A. Lowe.

About this article

Cite this article

Greising, S.M., Call, J.A., Lund, T.C. et al. Skeletal muscle contractile function and neuromuscular performance in Zmpste24 −/− mice, a murine model of human progeria. AGE 34, 805–819 (2012). https://doi.org/10.1007/s11357-011-9281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9281-x

Keywords

Navigation