Skip to main content
Log in

Mediterranean diet supplemented with coenzyme Q10 induces postprandial changes in p53 in response to oxidative DNA damage in elderly subjects

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Coenzyme Q10 (CoQ) is a powerful antioxidant that reduces oxidative stress. We explored whether the quality of dietary fat alters postprandial oxidative DNA damage and whether supplementation with CoQ improves antioxidant capacity by modifying the activation/stabilization of p53 in elderly subjects. In this crossover study, 20 subjects were randomly assigned to receive three isocaloric diets during 4 weeks each: (1) Mediterranean diet (Med diet), (2) Mediterranean diet supplemented with CoQ (Med+CoQ diet), and (3) saturated fatty acid-rich diet (SFA diet). Levels of mRNAs were determined for p53, p21, p53R2, and mdm2. Protein levels of p53, phosphorylated p53 (Ser20), and monoubiquitinated p53 were also measured, both in cytoplasm and nucleus. The extent of DNA damage was measured as plasma 8-OHdG. SFA diet displayed higher postprandial 8-OHdG concentrations, p53 mRNA and monoubiquitinated p53, and lower postprandial Mdm2 mRNA levels compared with Med and Med+CoQ diets (p < 0.05). Moreover, Med+CoQ diet induced a postprandial decrease of cytoplasmatic p53, nuclear p-p53 (Ser20), and nuclear and cytoplasmatic monoubiquitinated p53 protein (p < 0.05). In conclusion, Med+CoQ diet improves oxidative DNA damage in elderly subjects and reduces processes of cellular oxidation. Our results suggest a starting point for the prevention of oxidative processes associated with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Apo:

Apolipoprotein

BMI:

Body mass index

CoQ:

Coenzyme Q10

HDL-C:

HDL cholesterol

LDL:

Low-density lipoprotein

Med diet:

Mediterranean diet

Med+CoQ diet:

Mediterranean diet supplemented with CoQ

MUFA:

Monounsaturated fatty acid

PUFA:

Polyunsaturated fatty acid

ROS:

Reactive oxygen species

SFA:

Saturated fatty acid

SFA diet:

Saturated fatty acid-rich diet

References

  • Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268(10):2764–2772

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft M, Taya Y, Vousden KH (2000) Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol 20(9):3224–3233

    Article  PubMed  CAS  Google Scholar 

  • Bello RI, Gomez-Diaz C, Buron MI, Alcain FJ, Navas P, Villalba JM (2005) Enhanced anti-oxidant protection of liver membranes in long-lived rats fed on a coenzyme Q10-supplemented diet. Exp Gerontol 40(8–9):694–706

    Article  PubMed  CAS  Google Scholar 

  • Bennett MR (2001) Reactive oxygen species and death: oxidative DNA damage in atherosclerosis. Circ Res 88(7):648–650

    Article  PubMed  CAS  Google Scholar 

  • Bonora E, Corrao G, Bagnardi V, Ceriello A, Comaschi M, Montanari P, Meigs JB (2006) Prevalence and correlates of post-prandial hyperglycaemia in a large sample of patients with type 2 diabetes mellitus. Diabetologia 49(5):846–854

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brooks CL, Gu W (2004) Dynamics in the p53-Mdm2 ubiquitination pathway. Cell cycle Georgetown 3(7):895–899

    CAS  Google Scholar 

  • Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD (1999) Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci U S A 96(24):13777–13782

    Article  PubMed  CAS  Google Scholar 

  • Fito M, Guxens M, Corella D, Saez G, Estruch R, de la Torre R, Frances F, Cabezas C, Lopez-Sabater Mdel C, Marrugat J, Garcia-Arellano A, Aros F, Ruiz-Gutierrez V, Ros E, Salas-Salvado J, Fiol M, Sola R, Covas MI (2007) Effect of a traditional Mediterranean diet on lipoprotein oxidation: a randomized controlled trial. Arch Intern Med 167(11):1195–1203

    Article  PubMed  Google Scholar 

  • Forsmark-Andree P, Ernster L (1994) Evidence for a protective effect of endogenous ubiquinol against oxidative damage to mitochondrial protein and DNA during lipid peroxidation. Mol Aspects Med 15(Suppl):s73–81

    Article  PubMed  CAS  Google Scholar 

  • Huertas JR, Battino M, Lenaz G, Mataix FJ (1991) Changes in mitochondrial and microsomal rat liver coenzyme Q9 and Q10 content induced by dietary fat and endogenous lipid peroxidation. FEBS Lett 287(1–2):89–92

    Article  PubMed  CAS  Google Scholar 

  • Human Nutrition Information Service DoACof (1987). Washington, DC

  • Jimenez-Gomez Y, Marin C, Peerez-Martinez P, Hartwich J, Malczewska-Malec M, Golabek I, Kiec-Wilk B, Cruz-Teno C, Rodriguez F, Gomez P, Gomez-Luna MJ, Defoort C, Gibney MJ, Perez-Jimenez F, Roche HM, Lopez-Miranda J (2010) A low-fat, high-complex carbohydrate diet supplemented with long-chain (n-3) fatty acids alters the postprandial lipoprotein profile in patients with metabolic syndrome. The Journal of Nutrition 140(9):1595–1601

    Article  PubMed  CAS  Google Scholar 

  • Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10(9):1054–1072

    Article  PubMed  CAS  Google Scholar 

  • Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274(5289):948–953

    Article  PubMed  CAS  Google Scholar 

  • Lambeth JD, Cheng G, Arnold RS, Edens WA (2000) Novel homologs of gp91phox. Trends Biochem Sci 25(10):459–461

    Article  PubMed  CAS  Google Scholar 

  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W (2003) Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302(5652):1972–1975

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA, Franklin B, Kris-Etherton P, Harris WS, Howard B, Karanja N, Lefevre M, Rudel L, Sacks F, Van Horn L, Winston M, Wylie-Rosett J (2006) Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation 114(1):82–96

    Article  PubMed  Google Scholar 

  • Mataix J, Quiles JL, Huertas JR, Battino M, Manas M (1998) Tissue specific interactions of exercise, dietary fatty acids, and vitamin E in lipid peroxidation. Free Radic Biol Med 24(4):511–521

    Article  PubMed  CAS  Google Scholar 

  • Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295(14):1681–1687

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe JH, Bell DS (2007) Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am J Cardiol 100(5):899–904

    Article  PubMed  Google Scholar 

  • Ochoa-Herrera JJ, Huertas JR, Quiles JL, Mataix J (2001) Dietary oils high in oleic acid, but with different non-glyceride contents, have different effects on lipid profiles and peroxidation in rabbit hepatic mitochondria. J Nutr Biochem 12(6):357–364

    Article  PubMed  CAS  Google Scholar 

  • Quiles JL, Huertas JR, Battino M, Ramirez-Tortosa MC, Cassinello M, Mataix J, Lopez-Frias M, Manas M (2002) The intake of fried virgin olive or sunflower oils differentially induces oxidative stress in rat liver microsomes. Br J Nutr 88(1):57–65

    Article  PubMed  CAS  Google Scholar 

  • Quiles JL, Huertas JR, Manas M, Battino M, Mataix J (1999) Physical exercise affects the lipid profile of mitochondrial membranes in rats fed with virgin olive oil or sunflower oil. Br J Nutr 81(1):21–24

    PubMed  CAS  Google Scholar 

  • Quiles JL, Ochoa JJ, Huertas JR, Mataix J (2004) Coenzyme Q supplementation protects from age-related DNA double-strand breaks and increases lifespan in rats fed on a PUFA-rich diet. Exp Gerontol 39(2):189–194

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Tortosa MC, Urbano G, Lopez-Jurado M, Nestares T, Gomez MC, Mir A, Ros E, Mataix J, Gil A (1999) Extra-virgin olive oil increases the resistance of LDL to oxidation more than refined olive oil in free-living men with peripheral vascular disease. J Nutr 129(12):2177–2183

    PubMed  CAS  Google Scholar 

  • Rifai N, Tracy RP, Ridker PM (1999) Clinical efficacy of an automated high-sensitivity C-reactive protein assay. Clin Chem 45(12):2136–2141

    PubMed  CAS  Google Scholar 

  • Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11(12):1306–1313

    Article  PubMed  CAS  Google Scholar 

  • Santos-Gonzalez M, Gomez Diaz C, Navas P, Villalba JM (2007) Modifications of plasma proteome in long-lived rats fed on a coenzyme Q10-supplemented diet. Exp Gerontol 42(8):798–806

    Article  PubMed  CAS  Google Scholar 

  • Sen CKPL (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10:709–720

    PubMed  CAS  Google Scholar 

  • Stocker R, Bowry VW, Frei B (1991) Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc Natl Acad Sci U S A 88(5):1646–1650

    Article  PubMed  CAS  Google Scholar 

  • Stommel JM, Wahl GM (2005) A new twist in the feedback loop: stress-activated MDM2 destabilization is required for p53 activation. Cell cycle 4(3):411–417

    Article  PubMed  CAS  Google Scholar 

  • Thomas SR, Neuzil J, Stocker R (1996) Cosupplementation with coenzyme Q prevents the prooxidant effect of alpha-tocopherol and increases the resistance of LDL to transition metal-dependent oxidation initiation. Arterioscler Thromb Vasc Biol 16(5):687–696

    Article  PubMed  CAS  Google Scholar 

  • Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660(1–2):171–199

    PubMed  CAS  Google Scholar 

  • Varela G (1980) Tablas de composición de alimentos (food composition tables). Instituto de Nutrición CSIC, Madrid

    Google Scholar 

  • Weissman A, Lowenstein L, Peleg A, Thaler I, Zimmer EZ (2006) Power spectral analysis of heart rate variability during the 100-g oral glucose tolerance test in pregnant women. Diab Care 29(3):571–574

    Article  Google Scholar 

  • Yubero-Serrano EM, Delgado-Casado N, Delgado-Lista J, Perez-Martinez P, Tasset-Cuevas I, Santos-Gonzalez M, Caballero J, Garcia-Rios A, Marin C, Gutierrez-Mariscal FM, Fuentes F, Villalba JM, Tunez I, Perez-Jimenez F, Lopez-Miranda J (2010) Postprandial antioxidant effect of the Mediterranean diet supplemented with coenzyme Q10 in elderly men and women. Age (Dordr). doi:10.1007/s11357-010-9199-8

  • Zilversmit DB (1979) Atherogenesis: a postprandial phenomenon. Circulation 60(3):473–485

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Source of support

This study was supported in part by research grants from the Ministerio de Ciencia e Innovación (AGL 2004-07907, AGL2006-01979, AGL2009-12270 to JL-M; CB06/03/0047-CIBER Fisiopatologia de la Obesidad y Nutrition is an initiative of ISCIII to FP-J), Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía (P06-CTS-01425 to JL-M), Consejería de Salud, Junta de Andalucía (06/128, 07/43, PI0193/2009 to JL-M, 06/129 to FP-J), and Kaneka Corporation (Japan) for the production of CoQ and placebo capsules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Lopez-Miranda.

Additional information

Francisco M. Gutierrez-Mariscal and Pablo Perez-Martinez contributed equally to this work.

About this article

Cite this article

Gutierrez-Mariscal, F.M., Perez-Martinez, P., Delgado-Lista, J. et al. Mediterranean diet supplemented with coenzyme Q10 induces postprandial changes in p53 in response to oxidative DNA damage in elderly subjects. AGE 34, 389–403 (2012). https://doi.org/10.1007/s11357-011-9229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9229-1

Keywords

Navigation