Skip to main content
Log in

Expression of oxidative phosphorylation components in mitochondria of long-living Ames dwarf mice

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Reduced signaling of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) pathway is associated with extended life span in several species. Ames dwarf mice are GH-deficient and live >50% longer than wild-type littermates. Previously, we have shown that tissues from Ames mice exhibit elevated levels of antioxidative enzymes, less H2O2 production, and lower oxidative damage suggesting that mitochondrial function may differ between genotypes. To explore the relationship between hormone deficiency and mitochondria in mice with extended longevity, we evaluated activity, protein, and gene expression of oxidative phosphorylation components in dwarf and wild-type mice at varying ages. Liver complex I + III activity was higher in dwarf mice compared to wild-type mice. The activity of I + III decreased between 3 and 20 months of age in both genotypes with greater declines in wild-type mice in liver and skeletal muscle. Complex IV activities in the kidney were elevated in 3- and 20-month-old dwarf mice relative to wild-type mice. In Ames mice, protein levels of the 39 kDa complex I subunit were elevated at 20 months of age when compared to wild-type mouse mitochondria for every tissue examined. Kidney and liver mitochondria from 20-month-old dwarf mice had elevated levels of both mitochondrially-encoded and nuclear-encoded complex IV proteins compared to wild-type mice (p < 0.05). Higher liver ANT1 and PGC-1α mRNA levels were also observed in dwarf mice. Overall, we found that several components of the oxidative phosphorylation (OXPHOS) system were elevated in Ames mice. Mitochondrial to nuclear DNA ratios were not different between genotypes despite the marked increase in PGC-1α levels in dwarf mice. The increased OXPHOS activities, along with lower ROS production in dwarf mice, predict enhanced mitochondrial function and efficiency, two factors likely contributing to long-life in Ames mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arvier M, Lagoutte L, Johnson G, Dumas JF, Sion B, Grizard G, Malthièry Y, Simard G, Ritz P (2007) Adenine nucleotide translocator promotes oxidative phosphorylation and mild uncoupling in mitochondria after dexamethasone treatment. Am J Phys Endo Metab 293(5):E1320–E1324

    CAS  Google Scholar 

  • Bartke A (2000) Delayed aging in Ames dwarf mice. Relationships to endocrine function and body size. In: Hekimi S (ed) Results and problems in cell differentiation: the molecular genetics of aging, vol 29. Springer, Berlin, pp 181–202

    Google Scholar 

  • Bartke A, Bonkowski M, Masternak MT (2008) How diet interacts with longevity genes. Hormones (Athens) 7(1):17–23

    Google Scholar 

  • Bartke A, Brown-Borg HM (2004) Life extension in the dwarf mouse. In: Schatten GP (ed) Current topics in Developmental Biology Chapter 6, vol 63. Elsevier Academic Press, San Diego, CA, pp 189–225

  • Bokov AF, Lindsey ML, Khodr C, Sabia MR, Richardson A (2009) Long-lived Ames dwarf mice are resistant to chemical stressors. J Geron A Biol Sci 64:819–827

    Article  Google Scholar 

  • Borg KE, Brown-Borg HM, Bartke A (1995) Assessment of the primary adrenal cortical and pancreatic hormone basal levels in relation to plasma glucose and age in the unstressed Ames dwarf mouse. Proc Soc Exp Biol Med 210(2):126–133

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brown-Borg HM (2009) Hormonal control of aging in rodents: the somatotropic axis. Mol Cell Endo 299:64–71

    Article  CAS  Google Scholar 

  • Brown-Borg HM, Rakoczy SG (2000) Catalase expression in delayed and premature aging mouse models. Exp Geron 35:199–212

    Article  CAS  Google Scholar 

  • Brown-Borg HM, Rakoczy SG (2003) Growth hormone administration to long-living dwarf mice alters multiple components of the antioxidative defense system. Mech Ageing Dev 124:1013–1024

    Article  PubMed  CAS  Google Scholar 

  • Brown-Borg HM, Rakoczy SG (2005) Glutathione metabolism in long-living Ames dwarf mice. Exp Geron 40:115–120

    Article  CAS  Google Scholar 

  • Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the aging process. Nature 384:33

    Article  PubMed  CAS  Google Scholar 

  • Brown-Borg HM, Bode AM, Bartke A (1999) Antioxidative mechanisms and plasma growth hormone levels: potential relationship in the aging process. Endocr 11:41–48

    Article  CAS  Google Scholar 

  • Brown-Borg HM, Johnson WT, Rakoczy SG, Kennedy MA, Romanick MA (2001a) Mitochondrial oxidant production and oxidative damage in Ames dwarf mice. J Am Aging Assoc 24:85–96

    CAS  Google Scholar 

  • Brown-Borg HM, Rakoczy SG, Kennedy MA, Romanick MA (2001b) Relationship between plasma growth hormone, antioxidants and oxidative damage in premature and delayed aging mice. 83rd Annual Meeting of the Endocrine Society p. 237

  • Brown-Borg HM, Rakoczy SG, Romanick MA, Kennedy MA (2002) Effects of growth hormone and insulin-like growth factor-1 on hepatocyte antioxidative enzymes. Exp Biol Med 227:94–104

    CAS  Google Scholar 

  • Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Rad Biol Med 29(3–4):222–230

    Article  PubMed  CAS  Google Scholar 

  • Capaldi RA, Halphen DG, Zhang YZ, Yanamura W (1988) Complexity and tissue specificity of the mitochondrial respiratory chain. J Bioenerg Biomembr 20(3):291–311

    Article  PubMed  CAS  Google Scholar 

  • Castelluccio C, Baracca A, Fato R, Pallotti F, Maranesi M, Barzanti V, Gorini A, Villa RF, Parenti Castelli G, Marchetti M et al (1994) Mitochondrial activities of rat heart during ageing. Mech Ageing Dev 76(2–3):73–88

    Article  PubMed  CAS  Google Scholar 

  • Choksi KB, Roberts LJ 2nd, DeFord JH, Rabek JP, Papaconstantinou J (2007) Lower levels of F2-isoprostanes in serum and livers of long-lived Ames dwarf mice. Biochemical Biophys Res Comm 364:761–764

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  PubMed  CAS  Google Scholar 

  • Chomyn A, Cleeter MW, Ragan CI, Riley M, Doolittle RF, Attardi G (1986) URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. Science 234:614–618

    Article  PubMed  CAS  Google Scholar 

  • Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    Article  PubMed  CAS  Google Scholar 

  • Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol 526(1):203–210

    Google Scholar 

  • Cooper JM, Mann VM, Schapira AH (1992) Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of ageing. J Neurol Sci 113(1):91–98

    Article  PubMed  CAS  Google Scholar 

  • Cooperstein SJ, Lazorow A (1951) A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem 189:665–670

    PubMed  CAS  Google Scholar 

  • Corton JC, Brown-Borg HM (2005) Peroxisome proliferator-activated receptor gamma coactivator 1 in caloric restriction and other models of longevity. J Geron A Biol Sci Med Sci 60(12):1494–1509

    Article  Google Scholar 

  • Coschigano KT, Clemmons D, Bellush LL, Kopchick JJ (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141:2608–2613

    Article  PubMed  CAS  Google Scholar 

  • Davey GP, Peuchen S, Clark JB (1998) Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem 273(21):12753–12757

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    Article  PubMed  CAS  Google Scholar 

  • Fearnley IM, Carroll J, Shannon RJ, Runswick MJ, Walker JE, Hirst J (2001) GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 276(42):38345–38348

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Zhu M, Schaub MC, Gehrig P, Roschitzki B, Lucchinetti E, Zaugg M (2008) Phosphoproteome analysis of isoflurane-protected heart mitochondria: phosphorylation of adenine nucleotide translocator-1 on Tyr194 regulates mitochondrial function. Cardio Res 80(1):20–29

    Article  CAS  Google Scholar 

  • Flurkey K, Papconstantinou J, Miller RA, Harrison DA (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci 98:6736–6741

    Article  PubMed  CAS  Google Scholar 

  • Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46(6):821–831

    Article  PubMed  CAS  Google Scholar 

  • Hauck S, Bartke A (2000) Effects of growth hormone on hypothalamic catalase and CuZn superoxide dismutase. Free Rad Biol Med 28:970–978

    Article  PubMed  CAS  Google Scholar 

  • Hauck S, Bartke A (2001) Free radical defenses in the liver and kidney of human growth hormone transgenic mice: possible mechanisms of early mortality. J Geron Bio Sci 56A:B153–B162

    Article  CAS  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  PubMed  CAS  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov AV, Clark JF, Winkler K, Kunz WS (1996) Increase in flux control of cytochrome c oxidase in copper-deficient mottled brindled mice. J Biol Chem 271:283–288

    Article  PubMed  CAS  Google Scholar 

  • Kwong LK, Sohal RS (2000) Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys 373(1):16–22

    Article  PubMed  CAS  Google Scholar 

  • López-Torres M, Gredilla R, Sanz A, Barja G (2002) Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Rad Biol Med 32(9):882–889

    Article  PubMed  Google Scholar 

  • McCarter RJM (1995) Aging. In: Handbook of physiology. Oxford University Press, Oxford, UK, Chapt. 11

    Google Scholar 

  • Muoio DM, Koves TR (2007) Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARs and PGC1 alpha: implications for metabolic disease. Appl Physiol Nutr Metab 32(5):874–883

    Article  PubMed  CAS  Google Scholar 

  • Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Phys Cell Phys 292(2):C670–C686

    Article  CAS  Google Scholar 

  • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839

    Article  PubMed  CAS  Google Scholar 

  • Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77(3):731–758

    PubMed  CAS  Google Scholar 

  • Salmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, Miller RA (2005) Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Phys Endo Metab 289:E23–E29

    CAS  Google Scholar 

  • Salvioli S, Bonafè M, Capri M, Monti D, Franceschi C (2001) Mitochondria, aging and longevity—a new perspective. FEBS Lett 492(1–2):9–13

    Article  PubMed  CAS  Google Scholar 

  • Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakalmal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102(15):5618–5623

    Article  PubMed  CAS  Google Scholar 

  • Stauber AJ, Brown-Borg H, Liu J, Waalkes MP, Laughter A, Staben RA, Coley JC, Swanson C, Voss KA, Kopchick JJ, Corton JC (2005) Constitutive expression of peroxisome proliferator-activated receptor alpha-regulated genes in dwarf mice. Mol Pharmacol 67(3):681–694

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama S, Takasawa M, Hayakawa M, Ozawa T (1993) Changes in skeletal muscle, heart and liver mitochondrial electron transport activities in rats and dogs of various ages. Biochem Mol Biol Int 30(5):937–944

    PubMed  CAS  Google Scholar 

  • Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110

    Article  PubMed  CAS  Google Scholar 

  • Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264:484–509

    Article  PubMed  CAS  Google Scholar 

  • Trounce I (2000) Genetic control of oxidative phosphorylation and experimental models of defects. Human Reprod 15 Suppl 2:18-27

    Google Scholar 

  • Uthus EO, Brown-Borg HM (2003) Altered methionine metabolism in long-living Ames dwarf mice. Exp Geron 38:491–498

    Article  CAS  Google Scholar 

  • Ventura B, Genova ML, Bovina C, Formiggini G, Lenaz G (2002) Control of oxidative phosphorylation by complex I in rat liver mitochondria: implications for aging. Biochim Biophys Acta 1553(3):249–260

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC, Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10(1):12–31

    Article  PubMed  CAS  Google Scholar 

  • Westbrook R, Bonkowski MS, Strader AD, Bartke A (2009) Alterations in oxygen consumption, respiratory quotient, and heat production in long-lived GHRKO and Ames dwarf mice, and short-lived bGH transgenic mice. J Geron A Biol Sci Med Sci 64(4):443–451

    Article  Google Scholar 

  • Wong A, Cortopassi G (2002) Reproducible quantitative PCR of mitochondrial and nuclear DNA copy number using the LightCycler. Methods Mol Biol 197:129–137

    PubMed  CAS  Google Scholar 

  • Yan LJ, Sohal RS (1998) Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci USA 95(22):12896–12901

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express sincere gratitude to the National Institutes of Health (Grant #01322899) and the UND School of Medicine and Health Sciences Pharmacology, Physiology and Therapeutics Department for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly M. Brown-Borg.

Additional information

The US Department of Agriculture, Agricultural Research Service, Northern Plains Area is an equal opportunity/affirmative action employer and all agency services are available without discrimination.Mention of a trademark or proprietary product does not constitute a guarantee of warranty of the product by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.

About this article

Cite this article

Brown-Borg, H.M., Johnson, W.T. & Rakoczy, S.G. Expression of oxidative phosphorylation components in mitochondria of long-living Ames dwarf mice. AGE 34, 43–57 (2012). https://doi.org/10.1007/s11357-011-9212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9212-x

Keywords

Navigation