Skip to main content

Advertisement

Log in

Mechanism of Ang II involvement in activation of NF-κB through phosphorylation of p65 during aging

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Angiotensin II (Ang II), a major effector of the renin–angiotensin system, is now recognized as a pro-inflammatory mediator. This Ang II signaling, which causes transcription of pro-inflammatory genes, is regulated through nuclear factor-κB (NF-κB). At present, the molecular mechanisms underlying the effect of aging on Ang II signaling and NF-κB activation are not fully understood. The purpose of this study was to document altered molecular events involved in age-related changes in Ang II signaling and NF-κB activation. Experimentations were carried out using kidney tissues from Fischer 344 rats at 6, 12, 18, and 24 months of age, and the rat endothelial cell line, YPEN-1 for the detailed molecular work. Results show that increases in Ang II and Ang II type 1 receptor during aging were accompanied by the generation of reactive species. Increased Ang II activated NF-κB by phosphorylating IκBα and p65. Increased phosphorylation of p65 at Ser 536 was mediated by the enhanced phosphorylation of IκB kinase αβ, while phosphorylation site Ser 276 of p65 was mediated by upregulated mitogen-activated and stress-activated protein kinase-1. These altered molecular events in aged animals were partly verified by experiments using YPEN-1 cells. Collectively, our findings provide molecular insights into the pro-inflammatory actions of Ang II, actions that influence the phosphorylation of p65-mediated NF-κB activation during aging. Our study demonstrates the age-related pleiotropic nature of the physiologically important Ang II can change into a deleterious culprit that contributes to an increased incidence of many chronic diseases such as atherosclerosis, diabetes, and dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez A, Cerda-Nicolas M, Naim Abu Nabah Y, Mata M, Issekutz A, Panes J, Lobb R, Sanz M (2004) Direct evidence of leukocyte adhesion in arterioles by angiotensin II. Blood 104:402–408

    Article  PubMed  CAS  Google Scholar 

  • Atkinson A, Brown J, Fraser R, Lever A, Morton J, Riegger A, Robertson J (1980) Angiotensin II and renal hypertension in dog, rat and man: effect of converting enzyme inhibition. Clin Exp Hypertens 2:499–524

    Article  PubMed  CAS  Google Scholar 

  • Basseres D, Baldwin A (2006) Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25:6817–6830

    Article  PubMed  CAS  Google Scholar 

  • Basso N, Paglia N, Stella I, de Cavanagh E, Ferder L, del Rosario Lores Arnaiz M, Inserra F (2005) Protective effect of the inhibition of the renin–angiotensin system on aging. Regul Pept 128:247–252

    Article  PubMed  CAS  Google Scholar 

  • Bertrand V, Guessous F, Le Roy AL, Viossat B, Fessi H, El Abbouyi A, Giroud JP, Roch-Arveiller M (1999) Copper-indomethacinate associated with zwitterionic phospholipids prevents enteropathy in rats: effect on inducible NO synthase. Dig Dis Sci 44(5):991–999

    Google Scholar 

  • Carey R, Siragy H (2003) Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev 24:261–271

    Article  PubMed  CAS  Google Scholar 

  • Cassis P, Conti S, Remuzzi G, Benigni A (2010) Angiotensin receptors as determinants of life span. Pflugers Arch 459:325–332

    Article  PubMed  CAS  Google Scholar 

  • Chai W, Danser A (2005) Is angiotensin II made inside or outside of the cell? Curr Hypertens Rep 2:124–127

    Article  Google Scholar 

  • Chen L, Greene W (2004) Shaping the nuclear action of NF-κB. Nat Rev Mol Cell Biol 5:392–401

    Article  PubMed  CAS  Google Scholar 

  • Chung H, Kim H, Kim J, Yu B (2006) The inflammation hypothesis of aging. Ann NY Acad Sci 928:327–335

    Article  Google Scholar 

  • Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C (2009) Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 1:18–30

    Article  Google Scholar 

  • Cui R, Tieu B, Recinos A, Tilton R, Brasier A (2006) RhoA mediates angiotensin II-induced phospho-Ser536 nuclear factor kappa B/RelA subunit exchange on the interleukin-6 promoter in VSMCs. Circ Res 99:723

    Article  PubMed  CAS  Google Scholar 

  • de Cavanagh E, Piotrkowski B, Basso N, Stella I, Inserra F, Ferder L, Fraga C (2003) Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. FASEB J 9:1096–1098

    Google Scholar 

  • de Cavanagh E, Piotrkowski B, Fraga C (2004) Concerted action of the renin–angiotensin system, mitochondria, and antioxidant defenses in aging. Mol Aspects Med 25:27–36

    Article  PubMed  Google Scholar 

  • Diz D, Lewis K (2008) Dahl memorial lecture: the renin–angiotensin system and aging. Hypertension 52:37–43

    Article  PubMed  CAS  Google Scholar 

  • Douillette A, Bibeau-Poirier A, Gravel S, Clement J, Chenard V, Moreau P, Servant M (2006) The proinflammatory actions of angiotensin II are dependent on p65 phosphorylation by the IκB kinase complex. J Biol Chem 19:13275–13284

    Article  Google Scholar 

  • Endemann D, Schiffrin E (2004) Endothelial dysfunction. J Am Soc Nephrol 15(8):1983–1992

    Article  PubMed  CAS  Google Scholar 

  • Ferder L, Inserra F, Martinez-Maldonado M (2006) Inflammation and the metabolic syndrome: role of angiotensin II and oxidative stress. Curr Hypertens Rep 8:191–198

    Article  PubMed  CAS  Google Scholar 

  • Ferrario C, Strawn W (2006) Role of the renin–angiotensin–aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol 98:121–128

    Article  PubMed  CAS  Google Scholar 

  • Garrido A, Griendling K (2009) NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol 302:148–158

    Article  PubMed  CAS  Google Scholar 

  • Gilmore T (2006) Introduction to NF-κB: players, pathways, perspectives. Oncogene 25:6680–6684

    Article  PubMed  CAS  Google Scholar 

  • Higashi Y, Chayama K, Yoshizumi M (2005) Angiotensin II type I receptor blocker and endothelial function in humans: role of nitric oxide and oxidative stress. Curr Med Chem Cardiovasc Hematol Agents 3:133–148

    Article  PubMed  CAS  Google Scholar 

  • Hitomi H, Kiyomoto H, Nishiyama A (2007) Angiotensin II and oxidative stress. Curr Opin Cardiol 4:311–315

    Article  Google Scholar 

  • Hoffmann A, Levchenko A, Scott M, Baltimore D (2002) The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298:1241–1245

    Article  PubMed  CAS  Google Scholar 

  • Jaimes E, Tian R, Pearse D, Raij L (2005) Up-regulation of glomerular COX-2 by angiotensin II: role of reactive oxygen species. Kidney Int 5:2143–2153

    Article  Google Scholar 

  • Jaimes E, Hua P, Tian R, Raij L (2010) Human glomerular endothelium: interplay among glucose, free fatty acids, angiotensin II, and oxidative stress. Am J Physiol Renal Physiol 298:F125–F132

    Article  PubMed  CAS  Google Scholar 

  • Khan N, Hemmelgarn B, Herman R, Rabkin S, McAlister F, Bell C, Touyz R, Padwal R, Leiter L, Mahon J, Hill M, Larochelle P, Feldman R, Schiffrin E, Campbell N, Arnold M, Moe G, Campbell T, Milot A, Stone J, Jones C, Ogilvie R, Hamet P, Fodor G, Carruthers G, Burns K, Ruzicka M, dechamplain J, Pylypchuk G, Petrella R, Boulanger J, Trudeau L, Hegele R, Woo V, McFarlane P, Vallée M, Howlett J, Katzmarzyk P, Tobe S, Lewanczuk R (2008) The 2008 Canadian Hypertension Education Program recommendations for the management of hypertension: part 2—therapy. Can J Cardiol 6:465–475

    Article  Google Scholar 

  • Kim J, Jung J, Yu P, Cho G, Choi S, Chung Y (2002a) Modulation of redox-sensitive transcription factors by calorie restriction during aging. Mech Ageing Dev 12:1589–1595

    Article  Google Scholar 

  • Kim J, Lee E, Park G, Kim M, Yokozawa T, Yu B, Chung H (2002b) Morin modulates the oxidative stress-induced NF-kappaB pathway through its anti-oxidant activity. Free Radic Res 4:454–461

    Google Scholar 

  • Kim M, Lee K, Kim H, Yu P, Chung H (2010a) Kaempferol modulates pro-inflammatory NF-kappaB activation by suppressing advanced glycation endproducts-induced NADPH oxidase. Age 2:197–208

    Article  Google Scholar 

  • Kim M, Chung S, Kim D, Kim J, Lee E, Kim J, Ha Y, Kim Y, No J, Chung H, Park K, Rhee S, Choi J, Yu B, Yokozawa T, Kim Y, Chung H (2010b) Modulation of age-related NF-kappaB activation by dietary zingerone via MAPK pathway. Exp Gerontol 6:419–426

    Article  Google Scholar 

  • Kobori H, Nangaku M, Navar LG, Nishiyama A (2007) The intrarenal renin–angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 3:251–287

    Article  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Lassegue B, Sorescu D, Szocs K, Yin Q, Akers M, Zhang Y, Grant S, Lambeth J, Griendling K (2001) Novel gp91phox homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 9:888–894

    Article  Google Scholar 

  • Lee E, Chung S, Kim J, Kim J, Heo H, Lim H, Kim M, Anton S, Yokozawa T, Chung H (2009) Allylmethylsulfide down-regulates X-ray irradiation-induced nuclear factor-kappaB signaling in C57/BL6 mouse kidney. J Med Food 3:542–551

    Article  Google Scholar 

  • Luo J, Kamata H, Karin M (2005) IKK/NF-κB signaling: balancing life and death—a new approach to cancer therapy. J Clin Invest 10:2625–2632

    Article  Google Scholar 

  • Manjunath G, Tighiouart H, Coresh J, Macleod B, Salem D, Griffith J, Levey A, Sarnak M (2003) Level of kidney function as a risk factor for cardiovascular outcomes in the elderly. Kidney Int 63:1121–1129

    Article  PubMed  Google Scholar 

  • Mehta P, Griendling K (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 1:C82–C97

    Google Scholar 

  • Modrick M, Didion SP, Sigmund C, Faraci F (2009) Role of hydrogen peroxide and the impact of glutathione peroxidase-1 in regulation of cerebral vascular tone. Am J Physiol Heart Circ Physiol 6:H1914–H1919

    Article  Google Scholar 

  • Muller D, Dechend R, Mervaala E, Park J, Schmidt F, Fiebeler A, Theuer J, Breu V, Ganten D, Haller H (2000) NF-{kappa} B inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension 35:193–201

    PubMed  CAS  Google Scholar 

  • Ruiz-Ortega M, Lorenzo O, Ruperez M, Konig S, Wittig B, Egido J (2000) Angiotensin II activates nuclear transcription factor kappaB through AT (1) and AT (2) in vascular smooth muscle cells: molecular mechanisms. Circ Res 12:1266–1272

    Google Scholar 

  • Ruiz-Ortega M, Ruperez M, Esteban V, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J (2006) Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant 1:16–20

    Article  Google Scholar 

  • Schulman I, Zhou M, Treuer A, Chadipiralla K, Hare J, Raij L (2010) Altered renal expression of angiotensin II receptors, renin receptor, and ACE-2 precede the development of renal fibrosis in aging rats. Am J Nephrol 3:249–261

    Article  Google Scholar 

  • Seals D, DeSouza C, Donato A, Tanaka H (2008) Habitual exercise and arterial aging. J Appl Physiol 4:1323–1332

    Article  Google Scholar 

  • Seshiah P, Weber D, Rocic P, Valppu L, Taniyama Y, Griendling K (2002) Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 5:406–413

    Article  Google Scholar 

  • Stumpf C, John S, Jukic J, Yilmaz A, Raaz D, Schmieder R, Daniel W, Garlichs C (2005) Enhanced levels of platelet P-selectin and circulating cytokines in young patients with mild arterial hypertension. J Hypertens 5:995–1000

    Article  Google Scholar 

  • Swanson G, Hanesworth J, Sardinia M, Coleman J, Wright J, Hall K, Miller-Wing A, Stobb J, Cook V, Harding E (1992) Discovery of a distinct binding site for angiotensin II (3-8), a putative angiotensin IV receptor. Regulatorypeptides 40:409–419

    CAS  Google Scholar 

  • Touyz R, Yao G, Schiffrin E (2003) c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 6:981–987

    Article  Google Scholar 

  • Umezawa K, Ariga A, Matsumoto N (2000) Naturally occurring and synthetic inhibitors of NF-kappaB functions. Anticancer Drug Des 4:239–244

    Google Scholar 

  • Ungvari Z, Wolin M, Csiszar A (2006) Mechanosensitive production of reactive oxygen species in endothelial and smooth muscle cells: role in microvascular remodeling? Antioxid Redox Signal 8:1121–1129

    Article  PubMed  CAS  Google Scholar 

  • Viatour P, Merville M, Bours V, Chariot A (2005) Phosphorylation of NF-[kappa] B and I [kappa] B proteins: implications in cancer and inflammation. Trends Biochem Sci 1:43–52

    Article  Google Scholar 

  • Wei Y, Sowers J, Clark S, Li W, Ferrario C, Stump C (2008) Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase. Am J Physiol Endocrinol Metab 2:E345–E351

    Google Scholar 

  • Wolf G, Butzmann U, Wenzel U (2000) The renin–angiotensin system and progression of renal disease: from hemodynamics to cell biology. Nephron Physiol 93:p3–p13

    Article  Google Scholar 

  • Wolf G, Wenzel U, Burns K, Harris R, Stahl R, Thaiss F (2002) Angiotensin II activates nuclear transcription factor-κB through AT1 and AT2 receptors. Kidney Int 61:1986–1995

    Article  PubMed  CAS  Google Scholar 

  • Yu BP, Chung HY (2006) Adaptive mechanisms to oxidative stress during aging. Mech Ageing Dev 5:436–443

    Article  Google Scholar 

  • Zhong H, May M, Jimi E, Ghosh S (2002) The phosphorylation status of nuclear NF-[kappa] B determines its association with CBP/p300 or HDAC-1. Mol Cell 9:625–636

    Article  PubMed  CAS  Google Scholar 

  • Zhuo J, Alcorn D, Harris PJ (1993) Localization and properties of angiotensin II receptors in rat kidney. Mendelsohn FAKidney Int Suppl 42:S40–S46

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST, No.2009-0083538).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae Young Chung.

About this article

Cite this article

Kim, J.M., Heo, HS., Ha, Y.M. et al. Mechanism of Ang II involvement in activation of NF-κB through phosphorylation of p65 during aging. AGE 34, 11–25 (2012). https://doi.org/10.1007/s11357-011-9207-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9207-7

Keywords

Navigation