Skip to main content

Advertisement

Log in

Solar photovoltaic converter controller using opposition-based reinforcement learning with butterfly optimization algorithm under partial shading conditions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The major use of a power point tracking controller is to maximize or enhance the power generation in photovoltaic systems. These systems are steered to operate and maximize the power point. Under partial shading conditions, the power points may vary or fluctuate between global maxima and local maxima. This fluctuation leads to a decrease in energy or energy loss. Hence, to address the fluctuation issue and its variations, a new hybridized maximum power point tracking technique based on an opposition-based reinforcement learning approach with a butterfly optimization algorithm has been proposed. The proposed methodology has been tested on 6S, 3S2P and 2S3P photo-voltaic configurations under different shading conditions. Performance comparison and analysis have been presented with a butterfly optimization algorithm, grey wolf optimization algorithm, whale optimization algorithm, and particle swarm optimization-based maximum power point tracking techniques. Experimental results show that the proposed method performs better adaptation than the conventional approaches and mitigates the load variation convergence and frequent exploration and exploitation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not applicable

Abbreviations

OBRL:

opposition-based reinforcement learning

BOA:

butterfly optimization algorithm

GWO:

grey-wolf optimization algorithm

WOA:

whale optimization algorithm

PSO:

particle swarm optimization

6S:

six series

3S2P:

three series two parallel

2S3P:

two series three parallel

MPPT:

maximum power point tracking

MPP:

maximum power point

PV:

photo-voltaic

DC:

direct current

f(t):

fragrance fitness function

I(t):

stimulus intensity

C:

sensory modality

i(t):

duty cycle of the ith butterfly

Gbest(t):

global best duty cycle

Dutympp :

maximum power point at a particular duty cycle

besti(t):

best duty cycle at ith level or operation

s(t):

duty cycle at a sample

Pmpp :

power at the maximum power point

Pbesti(t):

best fit power generated at ith operation

Pi(t):

power at ith operation

s :

random number

n :

number of operations or executions

tmax:

maximum number of operations

Vmpp :

maximum power point voltage

Vpv :

voltage generated at photo-voltaic systems

best(t):

best location of a butterfly

α:

power exponent

λD:

duty cycle difference between two butterflies

References

  • Aanesan K, Heck S, Pinner D.  “Solar power. Darkest before dawn,” 2017 [Online]. Available: https://www.semanticscholar.org/paper/Solar-power%3A-Darkest-before-dawn-Aanesen-heck/e42c56b0be121dc5aa89086384fe69757afedcb3

  • Ahmad R, Murtaza AF, Sher HA (2019) Power tracking techniques for efficient operation of photovoltaic array in solar applications—a review. Renewable Sustain Energy Rev 101:82–102

    Google Scholar 

  • Al-Shahri OA, Ismail FB, Hannan MA, Lipu MH, Al-Shetwi AQ, Begum RA, Al-Muhsen NF, Soujeri E (2021) Solar photovoltaic energy optimization methods, challenges and issues: a comprehensive review. J Clean Prod 284:125465

    Google Scholar 

  • Alaraj M, Dube A, Alsaidan I, Rizwan M, Jamil M (2021) Design and development of a proficient converter for solar photovoltaic based sustainable power generating system. Sustainability 13:2045

    Google Scholar 

  • Ali A, Almutairi K, Padmanaban S, Tirth V, Algarni S, Irshad K, Islam S, Zahir MH, Shafiullah M, Malik MZ (2020) Investigation of MPPT techniques under uniform and non-uniform solar irradiation condition–a retrospection. IEEE Access 8:127368–127392

    Google Scholar 

  • Aouchiche N, Aitcheikh MS, Becherif M, Ebrahim MA (2018) AIbased global MPPT for partial shaded grid connected PV plant via MFO approach. Solar Energy 171:593–603

    Google Scholar 

  • Arora S, Singh S (2019) Butterfly optimization algorithm:a novel approach for global optimization. Soft Comput 23:715–734

    Google Scholar 

  • Avila L, De Paula M, Trimboli M et al (2020)  Deep reinforcement learning approach for MPPT control of partially shaded PV systems in smart grids. Appl Soft Comput J 97: 106711. https://doi.org/10.1016/j.asoc.2020.106711

  • Bank T. W “Population growth (annual %),” [Online]. Available: https://data.worldbank.org/indicator/SP.POP.GROW

  • Bidram A, Davoudi A, Balog RS (2012) Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays. IEEE J Photovolt 2(4):532–546

    Google Scholar 

  • Bindi M, Corti F, Aizenberg I, Grasso F, Lozito G, Luchetta A, Piccirilli M, Reatti A (2022) Machine learning-based monitoring of DC-DC converters in photovoltaic applications. Algorithms 15:74

    Google Scholar 

  • Bosman LB, Leon-Salas WD, Hutzel W, Soto EA (2020) PV System predictive maintenance: challenges, current approaches, and opportunities. Energies 13(6):1398

    Google Scholar 

  • Bu L, Quan S, Han J, Li F, Li Q, Wang X (2020) On-site traversal fractional open circuit voltage with uninterrupted output power for maximal power point tracking of photovoltaic systems. Electronics 9:1802

    Google Scholar 

  • Capellán-Pérez I, Mediavilla M, de Castro C, Carpintero Ó, Miguel L (2014) Fossil fuel depletion and socio-economic scenarios: an integrated approach. Energy 77:641–666. https://doi.org/10.1016/j.energy.2014.09.063

    Article  Google Scholar 

  • Chalh A, Motahhir S, El Hammoumi A, El Ghzizal A, Derouich A (2018) Study of a low-cost PV emulator for testing MPPT algorithm under fast irradiation and temperature change. Technol Econ Smart Grids Sustain Energy 3(1):1–10

    Google Scholar 

  • Ding M, Lv D, Yang C, Li S, Fang Q, Yang B, Zhang X (2019) Global maximum power point tracking of PV systems under partial shading condition: a transfer reinforcement learning approach. Appl Sci 9:2769. https://doi.org/10.3390/app9132769

    Article  Google Scholar 

  • Elgendy MA, Zahawi B, Atkinson DJ (2012) Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications. IEEE Trans Sustain Energy 3(1):21–31

    Google Scholar 

  • Elgendy MA, Zahawi B, Atkinson DJ (2013) Assessment of the incremental conductance maximum power point tracking algorithm. IEEE Trans Sustain Energy 4(1):108–117

    Google Scholar 

  • Elgendy MA, Zahawi B, Atkinson DJ (2015) Operating characteristics of the P&O algorithm at high perturbation frequencies for standalone PV systems. IEEE Trans Energy Convers 30(1):189–198

    Google Scholar 

  • Fan Q, Wang W, Yan X (2019) Differential evolution algorithm with strategy adaptation and knowledge-based controlparameters. Artif Intell Rev 51(2):219–253

    Google Scholar 

  • Farayola AM, Hasan AN, Ali A (2017) Curve fitting polynomial technique compared to ANFIS technique for maximum power point tracking. In: In Proceedings of the 2017 8th International Renewable Energy Congress (IREC), Amman, Jordan, pp 1–6

  • Fapi CBN, Wira P, Kamta M, Tchakounté H, Colicchio B (2021) Simulation and DSPACE hardware implementation of an improved fractional short-circuit current MPPT algorithm for photovoltaic system. Appl Sol Energy 57:93–106

    Google Scholar 

  • Fister I Jr, Yang X-S, Brest J, Fister D, Fister I (2015) Analysis of randomisation methods in swarm intelligence. Int J Bio-Inspir Com 7(1):36–49. https://doi.org/10.1504/IJBIC.2015.067989

    Article  Google Scholar 

  • Fister I, Yang X-S, Brest J (2014) On the randomized firefly algorithm. In: Cuckoo Search and Firefly Algorithm. Springer, pp 27–48

    Google Scholar 

  • Guo K, Cui L, Mao M, Zhou L, Zhang Q (2020) An improved gray wolf optimizer MPPT algorithm for PV system with BFBIC converter under partial shading. IEEE Access 8:103476–103490. https://doi.org/10.1109/ACCESS.2020.2999311

    Article  Google Scholar 

  • Hassaine L. Mode´ lisation et Simulation d’un Syste`me de Conditionnement de Puissance pour la Poursuite de Puissance Maximale dans les Syste`mesPhotovoltaı¨ques. Algeria: Me´moire de Magister, Ecole Nationale Polytechnique (ENP); Juin 2003.

  • Hong L, Yang D, Su W, Lü J, Yu X (2019) An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading. IEEE Trans Ind Electron 66(1):265–275. https://doi.org/10.1109/TIE.2018.2829668

    Article  Google Scholar 

  • Huang Y-P, Ye C-E, Chen XA (2018) Modified firefly algorithm with rapid response maximum power point tracking for photovoltaic systems under partial shading conditions. Energies 11:2284. https://doi.org/10.3390/en11092284

    Article  Google Scholar 

  • Ishaque K, Salam Z, Taheri H (2011) Accurate MATLAB simulink PV system simulator based on a two-diode model. J Power Electron 11(2):179–187

    Google Scholar 

  • Jha V, Triar US (2019) A detailed comparative analysis of different photovoltaic array configurations under partial shading conditions. Int Trans Electric Energy Syst 29(6):e12020

    Google Scholar 

  • Ji Y, Jung D, Kim J, Kim J, Lee T, Won C (2011) A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions. IEEE Trans Power Electron 26(4):1001–1009

    Google Scholar 

  • Kalogerakis C, Koutroulis E, Lagoudakis MG (2020) Global MPPT based on machine-learning for PV arrays operating under partial shading conditions. Appl Sci 10:700. https://doi.org/10.3390/app10020700

    Article  Google Scholar 

  • Kanagaraj N (2021) Photovoltaic and thermoelectric generator combined hybrid energy system with an enhanced maximum power point tracking technique for higher energy conversion efficiency. Sustainability 13:3144

    Google Scholar 

  • Khan NM, Khan UA, Zafar MH (2021) Maximum power point tracking of PV system under uniform irradiance and partial shading conditions using machine learning algorithm trained by sailfish optimizer. In: 2021 4th International Conference on Energy Conservation and Efficiency (ICECE), Lahore, Pakistan, pp 1–6. https://doi.org/10.1109/ICECE51984.2021.9406288

  • Koad RBA, Zobaa AF, El-Shahat A (2017) A novel MPPT algorithm based on particle swarm optimization for photovoltaic systems. IEEE Trans Sustain Energy 8(2):468–476

    Google Scholar 

  • Koutroulis E, Blaabjerg F (2012) A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions. IEEE J Photovolt 2(2):184–190

    Google Scholar 

  • Kumar N, Hussain I, Singh B, Panigrahi BK (2017a) Maximum power peak detection of partially shaded PV panel by using intelligent monkey king evolution algorithm. IEEE Trans Ind Appl 53(6):5734–5743

    Google Scholar 

  • Kumar N, Hussain I, Singh B, Panigrahi BK (2017b) MPPT in dynamic condition of partially shaded PV system by using WODE technique. IEEE Trans Sustain Energy 8(3):1204–1214

    Google Scholar 

  • Li H, Yang D, Su W, Lü J, Yu X (2018) An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading. IEEE Trans Ind Electron 66(1):265–275

    Google Scholar 

  • Lu CF, Liu CC, Wu CJ (1995) Dynamic modeling of battery energy storage system and application to power system stability. IEE Proc Gener Transm Distrib 142(4):429–435

    Google Scholar 

  • Luta DN, Raji AK (2019) Fuzzy rule-based and particle swarm optimisation MPPT techniques for a fuel cell stack. Energies 12:936. https://doi.org/10.3390/en12050936

    Article  CAS  Google Scholar 

  • Maki A, Valkealahti S (2012) Power losses in long string and parallel connected short strings of series-connected silicon-based photovoltaic modules due to partial shading conditions. IEEE Trans Energy Convers 27(1):173–183

    Google Scholar 

  • Malla SG, Malla P, Malla JMR, Singla R, Choudekar P, Koilada R, Sahu MK (2022) Whale optimization algorithm for PV based water pumping system driven by BLDC motor using sliding mode controller. IEEE J Emerg Sel Top Power Electron 10(4):4832–4844. https://doi.org/10.1109/JESTPE.2022.3150008

    Article  Google Scholar 

  • Mamur H, Ahiska R (2015) Application of a DC–DC boost converter with maximum power point tracking for low power thermoelectric generators. Energy Convers Manag 97:265–272

    Google Scholar 

  • Mathi DK, Chinthamalla R (2020) A hybrid global maximum power point tracking method based on butterfly particle swarm optimization and perturb and observe algorithms for a photovoltaic system under partially shaded conditions. Int Trans Electr Energ Syst 30:e12543

    Google Scholar 

  • Markvart T (2000) Light harvesting for quantum solar energy conversion. Prog Quantum Electron 24(3-4):107–186

    CAS  Google Scholar 

  • Martin AD, Vazquez JR, Cano JM (2018) MPPT in PV systems under partial shading conditions using artificial vision. Electr Power Syst Res 162:89–98. https://doi.org/10.1016/j.epsr.2018.05.005

    Article  Google Scholar 

  • Millah IS, Chang PC, Teshome DF, Subroto RK, Lian KL, Lin JF (2022) An enhanced grey wolf optimization algorithm for photovoltaic maximum power point tracking control under partial shading conditions. IEEE Open J Ind Electron 3:392–408. https://doi.org/10.1109/OJIES.2022.3179284

    Article  Google Scholar 

  • Mohanty S, Subudhi B, Ray PK (2016) A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions. IEEE Trans Sustain Energy 7(1):181–188

    Google Scholar 

  • Mohanty S, Subudhi B, Ray PK (2015) A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions. IEEE Trans Sustain Energy 7(1):181–188

    Google Scholar 

  • Mokhtar A, Rezk H (2022) An improved fuzzy logic control-based MPPT method to enhance the performance of PEM fuel cell system. Neural Comput & Applic 34:4555–4566. https://doi.org/10.1007/s00521-021-06611-5

    Article  Google Scholar 

  • Motahhir S, El Ghzizal A, Sebti S, Derouich A (2018a) Modeling of photovoltaic system with modified incremental conductance algorithm for fast changes of irradiance. Int J Photoenergy 13:1-13.

  • Motahhir S, El Hammoumi A, El Ghzizal A (2018b) Photovoltaic system with quantitative comparative between an improved MPPT and existing INC and P&O methods under fast varying of solar irradiation. Energy Reports 4:34–350

    Google Scholar 

  • Motahhir S, El Ghzizal A, Sebti S, Derouich A (2015) Proposal and implementation of a novel perturb and observe algorithm using embedded software. In: In 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC). IEEE, pp 1–5

    Google Scholar 

  • Motahhir S, AbdelilahChalh AEG, Derouich A (2018c) Development of a low-cost PV system using an improve INC algorithm and a PV panel Proteus model. J Clean Prod 204:355–365

    Google Scholar 

  • Nguyen TL, Low K (2010) A global maximum power point tracking scheme employing direct search algorithm for photovoltaic systems. IEEE Trans Ind Electron 57(10):3456–3467

    Google Scholar 

  • Oliver JS, David PW, Balachandran PK, Mihet-Popa L (2022) Analysis of grid-interactive PV-fed BLDC pump using optimized MPPT in DC–DC converters. Sustainability 14:7205. https://doi.org/10.3390/su14127205

    Article  Google Scholar 

  • Ostadrahimi A, Mahmoud Y (2021) Novel spline-MPPT technique for photovoltaic systems under uniform irradiance and partial shading conditions. IEEE Trans Sustain Energy 12(1):524–532. https://doi.org/10.1109/TSTE.2020.3009054

    Article  Google Scholar 

  • Patel H, Agarwal V (2008) Maximum power point tracking scheme for PV systems operating under partially shaded conditions. IEEE Trans Ind Electron 55(4):1689–1698

    Google Scholar 

  • Pei TT, Hao XH, Gu Q (2018) A novel global maximum power point tracking strategy based on modified flower pollination algorithm for photovoltaic systems under non-uniform irradiation and temperature conditions. Energies 11:2708

    Google Scholar 

  • Pervez I, Antoniadis C, Massoud Y (2022) A reduced search space exploration metaheuristic algorithm for MPPT. IEEE Access 10:26090–26100. https://doi.org/10.1109/ACCESS.2022.3156124

    Article  Google Scholar 

  • Phan BC, Lai Y-C, Lin CE (2020) A deep reinforcement learning-based MPPT control for PV systems under partial shading condition. Sensors 20:3039. https://doi.org/10.3390/s20113039

    Article  CAS  Google Scholar 

  • Pilakkat D, Kanthalakshmi S (2019) An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions. Solar Energy 178:37–47

    Google Scholar 

  • Pilakkat D, Kanthalakshmi S (2020) Single phase PV system operating under partially shaded conditions with ABC-PO as MPPT algorithm for grid connected applications. Energy Reports 6:1910–1921

    Google Scholar 

  • Polman A, Knight M, Garnett E, Ehrler B, Sinke W (2018) Photovoltaic materials: present efficiencies and future challenges. Science 352(6283):aad4424

    Google Scholar 

  • Priyadarshi N, Ramachandaramurthy V, Padmanaban S, Azam F (2019) An ant colony optimized MPPT for standalone hybrid PV-wind power system with single Cuk converter. Energies 12(1):167

    Google Scholar 

  • Punitha K, Devaraj D, Sakthivel S (2013) Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions. Energy 62:330–340. https://doi.org/10.1016/j.energy.2013.08.022

    Article  Google Scholar 

  • Qais MH, Hasanien HM, Alghuwainem S (2020) Whale optimization algorithm-based Sugeno fuzzy logic controller for fault ride-through improvement of grid-connected variable speed wind generators. Eng Appl Artif Intell 87:103328

    Google Scholar 

  • Rezk H, Abdelkareem MA, Ghenai C (2019) Performance evaluation and optimal design of stand-alone solar pv-battery system for irrigation in isolated regions: a case study in al minya (egypt). Sustain Energy Technol Assess 36:100556

    Google Scholar 

  • Seyedmahmoudian M, Soon TK, Horan B, Ghandhari A, Mekhilef S, Stojcevski A (2019) New ARMO-based MPPT technique to minimize tracking time and fluctuation at output of PV systems under rapidly changing shading conditions. IEEE Trans Ind Inform, 1-1. https://doi.org/10.1109/TII.2019.2895066

  • Subudhi B, Pradhan R (2013) A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans Sustain Energy 4(1):89–98

    Google Scholar 

  • Srinivasan S, Tiwari R, Krishnamoorthy M, Lalitha MP, Raj KK (2021) Neural network based MPPT control with reconfigured quadratic boost converter for fuel cell application. Int J Hydrog Energy 46(9):6709–6719. https://doi.org/10.1016/j.ijhydene.2020.11.121.

    Article  CAS  Google Scholar 

  • Shiqing T, Sun Y, Chen Y, Zhao Y, Yang Y, Szeto W (2017) An enhanced MPPT method combining fractional-order and fuzzy logic control. in IEEE Journal of Photovoltaics 7(2):640–650. https://doi.org/10.1109/JPHOTOV.2017.2649600

    Article  Google Scholar 

  • Taheri H, Salam Z, Ishaque K (2010) A novel maximum power point tracking control of photovoltaic system under partial and rapidly fluctuating shadow conditions using differential evolution. In: In 2010 IEEE symposium on industrial electronics and applications (ISIEA). IEEE, pp 82–87

    Google Scholar 

  • Teo JC, Tan RH, Mok VH, Ramachandaramurthy VK, Tan C (2020) Impact of bypass diode forward voltage on maximum power of a photovoltaic system under partial shading conditions. Energy 191:116491

    Google Scholar 

  • Tey KS, Mekhilef S, Yang HT, Chuang MK (2014) A differential evolution based MPPT method for photovoltaic modules under partial shading conditions. Int J Photoenergy, 1-11.

  • Tey S, Mekhilef S, Seyedmahmoudian M, Horan B, Oo AT, Stojcevski A (2018) Improved differential evolution-basedMPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation. IEEE Trans Ind Inform 14(10):4322–4333

    Google Scholar 

  • Tizhoosh HR (2006) Opposition-based reinforcement learning. J Adv Comput Intell Intell Inform 10, 578-585.

  • Vankadara SK, Chatterjee S, Balachandran PK (2022a) An accurate analytical modeling of solar photovoltaic system considering Rs and Rsh under partial shaded condition. Int J Syst Assur EngManag 13(5):2472–2481. https://doi.org/10.1007/s13198-022-01658-6

    Article  Google Scholar 

  • Vankadara SK, Chatterjee S, Balachandran PK, Mihet-Popa L (2022b) Marine predator algorithm (MPA)-based MPPT technique for solar PV systems under partial shading Conditions. Energies 15:6172. https://doi.org/10.3390/en15176172

    Article  Google Scholar 

  • Vieira RG, de Araújo FM, Dhimish M, Guerra MI (2020) A comprehensive review on bypass diode application on photovoltaic modules. Energies 13(10):2472

    Google Scholar 

  • Vitorino MA, Hartmann LV, Lima AM, Corrêa MB (2007) Using the model of the solar cell for determining the maximum power point of photovoltaic systems. In: In Proceedings of the 2007 European Conference on Power Electronics and Applications. IEEE, Aalborg, Denmark, pp 1–10

    Google Scholar 

  • Wu ZQ, Yu DQ (2018) Application of improved bat algorithm for solar PV maximum power point tracking under partially shaded condition. Appl Soft Comput 62:101–109

    Google Scholar 

  • Zhang X, Li S, He T, Yang B, Yu T, Li H, Lin J, Sun L (2019) Memetic reinforcement learning based maximum power point tracking design for PV systems under partial shading condition. Energy 174:1079–1090. https://doi.org/10.1016/j.energy.2019.03.053

    Article  Google Scholar 

  • Yin OW, Babu BC (2018) Simple and easy approach for mathematical analysis of photovoltaic (PV) module under normal and partial shading conditions. Optik 169:48–61

    CAS  Google Scholar 

  • Yousri D, Babu TS, Allam D, Ramachandaramurthy VK, Etiba MB (2019a) A novel chaotic flower pollination algorithm for global maximum power point tracking for photovoltaic system under partial shading conditions. IEEE Access 7:121432–121445. https://doi.org/10.1109/ACCESS.2019.2937600

    Article  Google Scholar 

  • Yousri D, El-Saadany EF, Shaker Y, Babu TS, Zobaa AF, Allam D (2022) Mitigating mismatch power loss of series–parallel and total-cross-tied array configurations using novel enhanced heterogeneous hunger games search optimizer. Energy Reports 8:9805–9827

    Google Scholar 

  • Yousri D, Babu TS, Allam D, Ramachandaramurthy VK, Beshr E, Eteiba MB (2019b) Fractional chaos maps with flower pollination algorithm for partial shading mitigation of photovoltaic systems. Energies 12:3548. https://doi.org/10.3390/en12183548

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work, under the Research Groups Funding program grant code (NU/RG/SERC/12/7).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Praveen Kumar Balachandran ; methodology: Devakirubakaran Samithas and Sudhakar Babu Thanikanti; formal analysis and investigation: Belqasem Aljafari ; writing—original draft preparation: Praveen Kumar Balachandran ; writing—review and editing: Sudhakar Babu Thanikanti and Devakirubakaran Samithas ; resources: Belqasem Aljafari ; supervision: Sudhakar Babu Thanikanti. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sudhakar Babu Thanikanti.

Ethics declarations

Ethical approval

The paper is not currently being considered for publication elsewhere.

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljafari, B., Balachandran, P.K., Samithas, D. et al. Solar photovoltaic converter controller using opposition-based reinforcement learning with butterfly optimization algorithm under partial shading conditions. Environ Sci Pollut Res 30, 72617–72640 (2023). https://doi.org/10.1007/s11356-023-27261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27261-1

Keywords

Navigation