Skip to main content

Advertisement

Log in

Prospects of emerging PAH sources and remediation technologies: insights from Africa

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Remediation of polluted environmental media is critical to realization of the goals of the United Nations Decade on Ecosystem Restoration (UNDER) project. Many natural-resource dependent economies in Africa are characterized by numerous contaminated sites resulting from conventional and artisanal natural-resource mining. Alongside these extractive activities, there are refining, processing, and power plant operations, agriculture, urban, and infrastructure developments that contribute to increased discharges of toxins into the environment, particularly polycyclic aromatic hydrocarbons (PAHs), which are carcinogenic in nature. As a result, human and environmental receptors (i.e., air, water, soil, and biota) face increasing risk of exposure to higher concentrations of PAH. Evidence exists of widespread PAH contamination and in some instances where corrective action has been taken, residual contaminant levels exceeding regulatory thresholds remain in the environment due to the use of inappropriate and unsustainable remedial methods. Considering the long-term harmful effects of PAH on human and ecosystem health, land use, and the complexity of Africa’s environmental deterioration, it is essential to explore remediation strategies that benefit both the environment and the economy. This review examined the status, opportunities, and challenges related to the application of emerging green technologies to remediate PAH-contaminated sites in five African countries (South Africa, Nigeria, Angola, Egypt, and Kenya). This paper concludes that bioremediation presents a sustainable option, considering its low net emissions and environmental footprints, and its low economic cost to Africa’s poor communities and overburdened economy. However, an integration of biological and physico-chemical approaches could address various compounds and concentrations of PAH contamination.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were collected or analyzed during the current study; therefore, data sharing is not applicable to this publication.

References

  • Abdallah MA, Atia NN (2014) Atmospheric concentrations, gaseous-particulate distribution, and carcinogenic potential of polycyclic aromatic hydrocarbons in Assiut Egypt. Environ Sci Pollut Res Intl 21(13):8069–8059

    Google Scholar 

  • Abdel-Shafy HI, Mansour MS (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25(1):107–123. https://doi.org/10.1016/jejpe201503011

    Article  Google Scholar 

  • Abhilash PC (2021) Restoring the unrestored: strategies for restoring global land during the un decade on ecosystem restoration (un-der). Land 10: 1–17 103390/land10020201

  • Acharya P, Ives P (1994) Incineration at Bayou Bounfouca remediation project. Waste Manag 14:13–26

    CAS  Google Scholar 

  • Adam SK, Umair A, Zhaowen M, Issaka F, Lamin RM, Meiyang D, Shenggan P, Xiangru T (2017) Cadmium uptake and distribution in fragrant rice genotypes and related consequences on yield and grain quality traits. J Chem 9 https://doi.org/10.1155/2017/1405878

  • Adeniji AO, Okoh OO, Okoh AI (2019) Levels of polycyclic aromatic hydrocarbons in the water and sediment of Buffalo River estuary, South Africa and their health risk assessment. Arch Environ Contam Toxicol 76:657–669

    CAS  Google Scholar 

  • Adrion AC, Singleton DR, Nakamura J, Shea D, Aitken MD (2016) Improving polycyclic aromatic hydrocarbon biodegradation in contaminated soil through low-level surfactant addition after conventional bioremediation. Environ Eng Sci 33:659–670. https://doi.org/10.1089/ees20160128

    Article  CAS  Google Scholar 

  • Ahmad AA, Muhammad I, Shah T, Kalwar Q, Zhang J, Liang Z, Mei D, Juanshan Z, Yan P, Zhi DX, Rui-Jun L (2020) Remediation methods of crude oil contaminated soil. World J Agri Soil Sci 4(3):8

    Google Scholar 

  • Ahmed OE, Mahmoud SA, El-Nady MM (2017) Levels, compositions, and quality of some Egyptian surface sediments from Suez Gulf, as integrated from polycyclic hydrocarbons. Energy Sources, Part a: Recovery, Utilization Environ Effects 39(7):664–672

    CAS  Google Scholar 

  • Alegbeleye OO, Opeolu BO, Jackson VA (2017) Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environ Manage 60(4):758–783. https://doi.org/10.1007/s00267-017-0896-2

    Article  Google Scholar 

  • Alexander M (1995) How toxic are toxic chemicals in soil? Environ Sci Technol 29(11):2713–2717

    CAS  Google Scholar 

  • Apiratikul R, Pongpiachan S, Zaffar M (2019) Health risk assessment of polycyclic aromatic hydrocarbons in coastal soils of Koh Samed Island (Thailand) after the oil spill incident in 2013. Marine Pollution Bulletin (9) https://doi.org/10.1016/jmarpolbul2019110736

  • Arthur GD, Davies TC, (2014) Sustainable bioremedial technology: abandoned mine conservation in South Africa IGCP/SIDA Projects 594 and 606, Closing Workshop, Prague, Czech Republic, 2014 © Czech Geological Survey, pp 13–15

  • Arulazhagan P, Mnif S, Rajesh Banu JR, Huda Q, Jalal MAB (2017) Biodegradation of hydrocarbons by extremophiles In: Heimann, K, Karthikeyan, OP, Muthu, SS (Eds), Biodegradation and bioconversion of hydrocarbons: environmental footprints and eco-design of products and processes Springer, Cham 137–162 https://doi.org/10.1007/978-981-10-0201-4_4

  • Asagbra MC, Adebayo AS, Anumudu CI, Ugwumba OA, Ugwumba AAA (2014) Polycyclic aromatic hydrocarbons in water, sediment and fish from the Warri River at Ubeji, Niger Delta Nigeria. Afr J Aqua Sci 40(2):193–199

    Google Scholar 

  • Balaji V, Arulazhagan P, Ebeneze P (2014) Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. Journal of Environmental Biology Vol 35

  • Bandowe BAM, Nkansah MA (2016) Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs, oxygenated-PAHs and azaarenes) in street dust from a major West African Metropolis. Sci Total Environ 553:439–449. https://doi.org/10.1016/jscitotenv201602142

    Article  CAS  Google Scholar 

  • Bansah KJ, Addo WK (2016) Phytoremediation potential of plants grown on reclaimed spoil lands. Ghana Min J 16(1):68–75

    Google Scholar 

  • Barakat AO (2002) PAHs and petroleum markers in the atmospheric environment of Alexandria City Egypt. Water Air Soil Pollut 139:289–310

    CAS  Google Scholar 

  • Barakat AO, Mostafa A, Wade TL, Sweet ST, El-Sayed NB (2011) Distribution and characteristics of PAHs in sediments from the Mediterranean coastal environment of Egypt. Mar Pollut Bull 69(9):1969–1978

    Google Scholar 

  • Barhoumi B, El Megdiche Y, Clérandeau C, Ameur WB, Mekni S, Bouabdallah S, Derouiche A, Touil S, Cachot J, Driss MR (2016) Occurrence of polycyclic aromatic hydrocarbons (PAHs) in mussel (Mytilus galloprovincialis) and eel (Anguilla anguilla) from Bizerte lagoon, Tunisia, and associated human health risk assessment. Cont Shelf Res 124:104–116

    Google Scholar 

  • Basweti JK, Nawiri MP, Nwambaka HN (2018) Physico-chemical parameters and levels of polycyclic aromatic hydrocarbons in water, sediments and soil in River Nzoia Kakamega County-Kenya. Environ Monit Assess 190(9):518

    CAS  Google Scholar 

  • Belal E, El-Ramady H (2016) Nanoparticles in water, soils and agriculture In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 2 Sustainable Agriculture Reviews, vol 21 Springer, Cham https://doi.org/10.1007/978-3-319-39306-3_10

  • Bello-Akinosho M, Makofane R, Adeleke R, Thantsha M, Pillay M, Chirima J (2016) Potential of polycyclic aromatic hydrocarbon-degrading bacterial isolates to contribute to soil fertility BioMed Research International, Vol 2016/Article ID 5798593/10 pages https://doi.org/10.1155/2016/5798593

  • Bertram C, Anna K, Killian O’, Warner B, Alexander P, Katrin R (2011) Metalliferous sediments in the Atlantis II Deep - assessing the geological and economic resource potential and legal constraints Kiel Working Paper No 1688, March 2011

  • Bezza FA, Chirwa EMN (2015) Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere 144:635–644

    Google Scholar 

  • Blyth W, Shahsavari E, Morrison PD, Ball AS (2015) Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site. J Environ Manage 162:30–36

    CAS  Google Scholar 

  • Bonte M, Gundlach E, Iroakasi O, Visigah K, Giadom F, Shekwolo P, Nwabueze V, Cowing M, Zabbey N (2019) Comparison of chemical sediment analyses and field oiling observations from the Shoreline Cleanup Assessment Technique (SCAT) in heavily oiled areas of former mangrove in Bodo, eastern Niger Delta. Q J Eng GeolHydrogeol 53:19–30

    Google Scholar 

  • Cappuyns V (2013) Environmental impacts of soil remediation activities: quantitative and qualitative tools applied on three case studies. J Clean Prod 52: 145–154 https://doi.org/10.1016/jjclepro201303023

  • Chikere CB, Azubuike CC, Fubara EM (2017) Shift in microbial group during remediation by enhanced natural attenuation (RENA) of crude oil-impacted soil: a case study of Ikarama Community Bayelsa Nigeria. Biotech 3(7):152

    Google Scholar 

  • Chimuka L, Sibiya P, Amdany R, Cukrowska E, Forbes PB (2016) Status of PAHs in environmental compartments of South Africa: a country report, Polycycl Aromat Compd 36: 376–394 https://doi.org/10.1080/104066382014988276

  • Contreras-Ramos SM, Álvarez-Bernal D, Dendooven L (2006) Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil. Environ Pollut 141:396–401. https://doi.org/10.1016/jenvpol200508057

    Article  CAS  Google Scholar 

  • Crnković D, Sekulić Z, Antonović D, Marinković A, Popović S, Nikolić J, Drmanić S (2020) Origins of polycyclic aromatic hydrocarbons in sediments from the Danube and Sava rivers and their tributaries in Serbia. Pol J Environ Stud 29(3): 1–10 https://doi.org/10.15244/pjoes/111319

  • Dai C, Han Y, Duan Y, Lai X, Fu R, Liu S, Leong KH, Tu Y, Zhou L (2022) Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. Environ Res 205:112423

    CAS  Google Scholar 

  • Das S, Dash H (2014) Microbial bioremediation: a potential tool for restoration of contaminated areas. Microb Biodegrad Bioremediation 1–12

  • Davis AS, Prakash P, Thamaraiselvi K (2017) Nanobioremediation technologies for sustainable environment In: Prashanthi M, Sundaram R, Jeyaseelan A, Kaliannan T (eds) Bioremediation and sustainable technologies for cleaner environment Environmental Science and Engineering Springer, Cham https://doi.org/10.1007/978-3-319-48439-6_2

  • Dell’Anno A, Beolchini F, Corinaldesi C, Amato A, Becci A, Rastelli E, Hekeu M, Regoli F, Astarita E, Greco S, Musco L, Danovaro R (2020) Assessing the efficiency and eco-sustainability of bioremediation strategies for the reclamation of highly contaminated marine sediments. Mar Environ Res 162:105101

    CAS  Google Scholar 

  • Derudi M, Venturini G, Lombardi G, Nano G, Rota R (2007) Biodegradation combined with ozone for the remediation of contaminated soils. Eur J Soil Biol 43:297–303

    CAS  Google Scholar 

  • Ebuehi OAT, Abibo IB, Shekwolo PD, Sigismund KI, Adoki A, Okoro IC (2005) Re- mediation of crude oil contaminated soil by enhanced natural attenuation technique. J Appl Sci Environ Manag 9

  • Edokpayi JN, Odiyo JO, Popoola OE, Msagati TAM (2016) Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in Vhembe District, South Africa. Int J Environ Res Public Health 13:387. https://doi.org/10.3390/ijerph13040387

    Article  CAS  Google Scholar 

  • Effendi AJ, Aminati T (2019) Enhancing bioremediation of crude oil contaminated soil by combining with photocatalytic process using TiO2 as catalyst. GEOMATE J 17(64):100–107

    Google Scholar 

  • Eijsackers H, Van Gestel CA, De Jonge S, Muijs B, Slijkerman D (2001) Polycyclic aromatic hydrocarbon-polluted dredged peat sediments and earthworms: a mutual interference. Ecotoxicology 10:35–50. https://doi.org/10.1023/a:1008954706150

    Article  CAS  Google Scholar 

  • Elbagermi MA, Alajtal AI, Edwards HGM (2017) Quantitative determination of heavy metal concentrations in herbal teas marketed in various countries including Libya. Asian J Res Biochem 1(1):1–10

    Google Scholar 

  • El-Kady AA, Wade TL, Sweet ST (2018) Assessment and ecological indicators of total and polycyclic aromatic hydrocarbons in the aquatic environment of Lake Manzala Egypt. J Environ Sci Health A Tox Hazard Subst Environ Eng 53(9):854–865

    CAS  Google Scholar 

  • El-Nemr NA, Abd-Allah AM (2003) Contamination of polycyclic aromatic hydrocarbons (PAHs) in microlayer and subsurface waters along Alexandria coast Egypt. Chemosphere 52(10):1711–1716

    CAS  Google Scholar 

  • El-Ramady H, Alshaal T, El-Henawy A, Abdalla N, Taha HS, Elmahrouk M, Shalaby T, Elsakhawy T, Omara AE, El-Marsafawy S, Elhawat N, Shehata S, Selmar D, Domokos-Szabolcsy E (2017) Environmental nanoremediation under changing climate. Env Biodiv Soil Security 1:109–128

    Google Scholar 

  • El-Shahawi MS, Hamza A, Bashammakh AS, Al-Saggaf WT (2010) An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 80:1587–1597

    CAS  Google Scholar 

  • Eze CN, Odoh CK, Eze EA, Enemuor SC, Orjiakor IP, Okobo UJ (2018) Chromium (III) and its effects on soil microbial activities and phytoremediation potentials of Arachis hypogea and Vigna unguiculata. Afr J Biotech 17(38):1207–1214. https://doi.org/10.5897/AJB201816566

    Article  CAS  Google Scholar 

  • Ferrarese E, Andreottola G, Oprea IA (2008) Remediation of PAH-contaminated sediments by chemical oxidation. J Hazard Mater 152:128–139

    CAS  Google Scholar 

  • Forbes VE, Calow P, Sibly RM (2008) The extrapolation problem and how population modeling can help. Environ Toxicol Chem 27:1987–1994

    CAS  Google Scholar 

  • Forbes PBC, Rohwer ER (2008) Monitoring of trace organic air pollutants: a developing country perspective Air Pollution XVI, WIT Transactions on Ecology and the Environment, 116, 345–355 ISSN 1743-3541

  • Franca FP, Muteca FLL, Oliveira FJS (2014) Bioremediation of fluvial sediment contaminated by Angolan crude oil Brazilian. J Petrol Gas 8(4):139–149

    Google Scholar 

  • Franck HG, Stadelhofer JW (1987) Industrial aromatic chemistry: raw products, processes, products. Springer: Berlin, Germany 308–380

  • Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549

    CAS  Google Scholar 

  • Gan X, Teng Y, Ren W, Ma J, Christie P, Luo Y (2017) Optimization of ex-situ washing removal of polycyclic aromatic hydrocarbons from a contaminated soil using nano-sulfonated graphene. Pedosphere 27:527–536. https://doi.org/10.1016/S1002-0160(17)60348-5

    Article  CAS  Google Scholar 

  • Gaur N, Narasimhulu K, PydiSetty Y (2018) Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J Clean Prod 198:1602–1631. https://doi.org/10.1016/jjclepro201807076

    Article  CAS  Google Scholar 

  • Ghaderian SM, Mohtadi A, Rahiminejad R, Reeves RD, Baker AJM (2007) Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran Plant. Soil 293:91–97. https://doi.org/10.1007/s11104-007-9221-9

    Article  CAS  Google Scholar 

  • Gudiña, EJ, Teixeira, JA (2017) Biological treatments to improve the quality of heavy crude oils In: Heimann, K, Karthikeyan, OP, Muthu, SS (Eds), Biodegradation and bioconversion of hydrocarbons: environmental footprints and eco-design of products and processes Springer, Cham 337–351 https://doi.org/10.1007/978-981-10-0201-4_10

  • Guerin TF (2000) The differential removal of aged polycyclic aromatic hydrocarbons from soil during bioremediation. Environ Sci Pollut Res 7:19–26

    CAS  Google Scholar 

  • Guety T, Bolou Bi EB, Jeanne BDA, Kone B (2017) Metallic trace elements (MTE) in soils and plant organs of some crop in periurban of Abidjan (Ivory Coast). Adv Agri Sci 5(04):13–31

    Google Scholar 

  • Guimarães BCM, Arends JBa, van der Ha D, Van de Wiele T, Boon N, Verstraete W (2010) Microbial services and their management: recent progresses in soil bioremediation technology. Appl Soil Ecol 46:157–167 https://doi.org/10.1016/japsoil201006018

  • Gundlach ER (2018) Oil-related mangrove loss East of Bonny River In: Makowski, C, Finkl, CW (Eds), Threats to mangrove forests hazards: vulnerability and management solutions. Coastal Research Library 25, Springer, Cham 267–321 https://doi.org/10.1007/978-3-319-73016-5_13

  • Hadibarata T, Teh ZC (2014) Optimization of pyrene degradation by white-rot fungus Pleurotus pulmonarius F043 and characterization of its metabolites. Bioprocess Biosyst Eng 37(8):1679–1684

    CAS  Google Scholar 

  • Haiba NSA (2019) Polycyclic aromatic hydrocarbons (PAHs) in the River Nile, Egypt: occurrence and distribution. Polycyclic Aromat Compd 39(5):425–433

    CAS  Google Scholar 

  • Harold RN (2013) The mineral industries of Morocco and Western Sahara, In USGS Morocco and Western Sahara Minerals yearbook pp. 311–3110

  • Heng CY, Salleh MMd, Yahya A, Ibrahim Z, Hussin H (2017) Isolation and characterisation of crude oil degrading microorganisms from petrochemical wastewater In: Heimann, K, Karthikeyan, OP, Muthu, SS (Eds), Biodegradation and bioconversion of hydrocarbons: environmental footprints and eco-design of products and processes Springer, Cham pp. 353–370 https://doi.org/10.1007/978-981-10-0201-4_11

  • Hesham AE, Mawad AMM, Mostaya YM, Shoreit A (2014) Bioremediation ability and catalytic genes of petroleum-degrading sphingomonas kereensis strain Asu-06 isolated from Egyptian Only Soil BioMed Research International Volume 2014/Article ID 127674/10 pages https://doi.org/10.1155/2014/127674

  • Hines A, Oladiran GS, Bignell JP, Stentiford GD, Viant MR (2007) Direct sampling of organisms from the field and knowledge of their phenotype: key recommendations for environmental metabolomics. Environ Sci Technol 41:3375–3381

    CAS  Google Scholar 

  • Huang X-D, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476. https://doi.org/10.1016/jenvpol200309031

    Article  CAS  Google Scholar 

  • Huang Y, Fulton AN, Keller AA (2016) Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Sci Tot Environ 571:1029–1036

    CAS  Google Scholar 

  • Ibañez S, Talano M, Ontan O, Suman J, Medina MI, Macek T, Agostini E (2015a) Transgenic plants and hairy roots: exploiting the potential of plant species to remediate contaminants. New Biotechnology, 1–11 https://doi.org/10.1016/jnbt201511008

  • Ibanez SG, Paisio CE, Wevar-Oller AL, Talano MA, Gonzalez PS, Medina MI, Agostini E (2015b) Overview and new insights of genetically engineered plants for improving phytoremediation In: Ansari AA, Gill, SS, Gill, R, Lanza, GL, Newman, L (Eds), Phytoremediation: management of environmental contaminants, Vol 1 Switzerland: Springer International Publishing, pp. 99–113

  • Igbiri S, Udowelle NA, Ekhator OC, Asomugha RN, Igweze ZN, Orisakwe OE (2017) Polycyclic aromatic hydrocarbons In: Edible mushrooms from Niger Delta, Nigeria: Carcinogenic and non-carcinogenic health risk assessment. Asian Pac J Cancer Prev 18(2): 437–447

  • Ilechukwu I, Osuji LC (2013) Characterization of polycyclic aromatic hydrocarbons (PAHs) inroad paving asphalt. Environ Chem Bull 2(4):188–190

    Google Scholar 

  • Ilori MO, Adebusoye SA, Obayori OS, Oyetibo GO, Ajidahun O, James C, Amund OO (2011) Extensive biodegradation of Nigerian crude oil (Escravos light) by newly characterized yeast strains. Pet Sci Technol 29(21):2191–2208

    CAS  Google Scholar 

  • Inam E, Offiong N, Antia B (2016) Polycyclic aromatic hydrocarbons loads and potential risks in freshwater ecosystem of the Ikpa River Basin Niger Delta-Nigeria. Environ Monit Assess 188:49

    Google Scholar 

  • Ipeaiyeda AR, Nwauzor GO, Akporido SO (2015) Biodegradation of polycyclic aromatic hydrocarbons in agricultural soil contaminated with crude oil from Nigeria refinery using Pleurotus sajor-caju. J Bioremed Biodegrad. 6(3)

  • Isosaari P, Piskonen R, Ojala P, Voipio S, Eilola K, Lehmus E. Itävaara, M (2007) Integration of electrokinetics and chemical oxidation for the remediation of creosote-contaminated clay. Journal of Hazardous Materials 144: 538-548 https://doi.org/10.1016/jjhazmat200610068

  • Iwegbue CMA, Tesi GO, Bassey FI, Martincigh BS, Nwajei GE, Ucheaga C (2016) Determination of polycyclic aromatic hydrocarbons in water- and gin-based tea infusions of selected tea brands in Nigeria. Polycyclic Aromat Compd 36:564–586

    CAS  Google Scholar 

  • Kaur S, Kumar B, Chakraborty P, Kumar V, Kothiyal NC (2022) Polycyclic aromatic hydrocarbons in PM10 of a north-western city, India: distribution, sources, toxicity and health risk assessment. Intl J Environ Sci Tech 19(2):1041–1056

    CAS  Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2016) Role of nanomaterials in plants under challenging environments. Plant Physiology and Biochemistry 110: 194–209. https://doi.org/10.1016/jplaphy201605038

  • Kim KH, Jahan SA, Kabir E, Brown RJ (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Inter 60:71–80

    CAS  Google Scholar 

  • Kohrs B, Kafuka P (2014) Study on low level radiation of Rio Tinto’s Rössing Uranium Mine Workers EJOLT & Earthlife Namibia Report

  • Kumar V, Kothiyal NC (2011) Distribution behavior of polycyclic aromatic hydrocarbons in roadside soil at traffic intercepts within developing cities. Inter J Environ Sci Tech 8(1):63–72

    CAS  Google Scholar 

  • Kumar V, Kothiyal NC (2012) Distribution behavior and carcinogenic level of some polycyclic aromatic hydrocarbons in roadside soil at major traffic intercepts within a developing city of India. Environ Monit Asses 184(10):6239–6252

    CAS  Google Scholar 

  • Kumar V, Kothiyal NC, Saruchi, (2016a) Analysis of polycyclic aromatic hydrocarbon, toxic equivalency factor and related carcinogenic potencies in roadside soil within a developing city of Northern India. Polycyclic Aromat Compd 36(4):506–526

    CAS  Google Scholar 

  • Kumar V, Kothiyal NC, Saruchi, Vikas, P, Sharma R (2016b) Sources, distribution, and health effect of carcinogenic polycyclic aromatic hydrocarbons (PAHs)–current knowledge and future directions. J Chinese Adv Mater Soc 4(4): 302-321

  • Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R (2016a) In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. Rev Environ Contam Toxicol 236:1–115

    CAS  Google Scholar 

  • Kuppusamy S, Thavamani P, Megharaj M, Naidu R (2015) Bioremediation potential of natural polyphenol rich green wastes: a review of current research and recommendations for future directions. Environ Technol Innov 4:17–28

    Google Scholar 

  • Kuppusamy S, Thavamani P, Megharaj M, Naidu R (2016b) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by novel bacterial consortia tolerant to diverse physical settings: assessments in liquid-and slurry-phase systems. Int Biodeterior Biodegradation 108:149–157

    CAS  Google Scholar 

  • Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968. https://doi.org/10.1016/jchemosphere201610115

    Article  CAS  Google Scholar 

  • Kwach BO, Lalah JO (2009) High concentrations of polycyclic aromatic hydrocarbons found in water and sediments of car wash and Kisat of Winam Gulf, Lake Victoria Kenya. Bull Environ Contam Toxicol 83(5):727–733

    CAS  Google Scholar 

  • Laraia M (2013) Remediation of radioactively contaminated sites and management of the resulting waste In: Lee, WE, Ojovan, MI, Jantzen, CM (Eds), Radioactive waste management and contaminated site clean-up, Woodhead Publishing Series in Energy Woodhead Publishing:pp 301–326 https://doi.org/10.1533/97808570974461301

  • Lawrence DM, Lambert-Smith JS, Treloar PJ (2016) Review of gold mineralization in Mali In: Bouabdellah M, Slack J (Eds), Mineral Deposits of North Africa. Mineral Resource Reviews Springer, Cham

  • Lee CC, Chen CS, Wang ZX, Tien CJ (2021) Polycyclic aromatic hydrocarbons in 30 river ecosystems, Taiwan: sources, and ecological and human health risks. Sci Total Environ 795:148867

    CAS  Google Scholar 

  • Lehto T, Gonçalves R (2008) Mineral resources potential in Mozambique geological survey of Finland. Special Paper 48:307–321

    Google Scholar 

  • Little DI, Holtzmann K, Gundlach ER, Galperin Y (2018) Sediment hydrocarbons in former mangrove areas, southern Ogoniland, Eastern Niger Delta, Nigeria In: Makowski C, Finkl CW (eds) Threats to mangrove forests: hazards, vulnerability and management solutions. Coastal Research Library, 25 Springer, Cham, pp 267–321. https://www.springerprofessionalde/en/sediment-hydrocarbons-in-former-mangrove-areas-southern-ogonilan/15709984. Accessed 19 Jun 2022

  • Macaulay BM, Rees D (2014) Bioremediation of oil spills: a review of challenges for research advancement. Ann Environ Sci 8:9–37

    Google Scholar 

  • Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152

    CAS  Google Scholar 

  • Mackova M, Barriault D, Francova K, Sylvestre M, Moder M, Vrchotova B, Lovecka P, Najmanova J, Demnerova K, Novakova M, Rezek J, Macek T (2006) Phytoremediation of polychlorinated biphenyls In: Mackova, M, Dowling, D, Macek, T (Eds), Phytoremediation and rhizoremediation, theoretical background Springer: the Netherlands, pp 143–67

  • Maini G, Sharman AK, Knowles CJ, Sunderland G, Jackman SA (2000) Electrokinetic remediation of metals and organics from historically contaminated soil. J Chem Technol Biotechnol 75:657–664. https://doi.org/10.1002/1097-4660(200008)75:8%3c657::AID-JCTB263%3e30CO;2-5

    Article  CAS  Google Scholar 

  • Maletić SP, Beljin JM, Rončević SD, Grgić MG, Dalmacija BD (2019) State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: sources, fate, bioavailability and remediation techniques. J Hazard Mater 365:467–482. https://doi.org/10.1016/jjhazmat201811020

    Article  Google Scholar 

  • Mallah MA, Changxing L, Mallah MA, Noreen S, Liu Y, Saeed M, Xi H, Ahmed B, Feng F, Mirjat AA, Wang W (2022) Polycyclic aromatic hydrocarbon and its effects on human health: an updated review. Chemosphere 133948

  • Maobe M, Gatebe E, Gitu L, Rotich H (2012) Profile of heavy metals in selected medicinal plants used for the treatment of diabetes, malaria and pneumonia in Kisii Region, Southwest Kenya. Glob J Pharmacol 6:245–251. https://doi.org/10.5829/idosigjp20126365128

    Article  Google Scholar 

  • Martínez-Fernández D, Vítková M, Michálková Z, Komárek M (2017) Engineered nanomaterials for phytoremediation of metal/metalloid-contaminated soils: implications for plant physiology In: Ansari A, Gill S, Gill R, R Lanza G, Newman L (eds) Phytoremediation Springer, Cham https://doi.org/10.1007/978-3-319-52381-1_14

  • Mekki A, Sayadi S (2017) Study of heavy metal accumulation and residual toxicity in soil saturated with phosphate processing wastewater. Water Air Soil Pollut 228(215):1–10. https://doi.org/10.1007/s11270-017-3399-0

    Article  CAS  Google Scholar 

  • Merem EC, Twumasi Y, Wesley J, Isokpehi P, Shenge M, Fageir S, Crisler M, Romorno C, Hines A, Hirse G, Ochai S, Leggett S, Nwagboso E (2017) Assessing the ecological effects of mining in West Africa: the case of Nigeria. Int J Min Eng Miner Process 6(1):1–19. https://doi.org/10.5923/jmining2017060101

    Article  Google Scholar 

  • Mganga N, Manoko M, Rulangaranga Z (2011) Classification of plants according to their heavy metal content around North Mara Gold Mine, Tanzania: implication for phytoremediation Tanzan J Sci 37: 109–119

  • Min L, Tang J, Tong A, Mu X, Yang Y, Yi T, Zhao X (2017) Cytochrome P450 1B1 Leu432val gene polymorphisms in the risks of benign uterine diseases: a systemic review and meta-analysis. Int J Clin Exp Med 10:8780–8787

    Google Scholar 

  • Mogopodi D, Mosetlha K, Torto N, Wibetoe G (2008) Accumulation patterns of Cu and Ni for Indigofera melanadenia and Tephrosia longipes plant species growing in Cu-Ni mining area in Botswana. J Geochem Explor 9:21–28

    Google Scholar 

  • Mowafa T (2013) Minerals Yearbook: Egypt (Advance Release) US Geological Survey, November 2015

  • Mowafa T (2016) The mineral industry of Mauritania In USGS Mineral Yearbook, Mauritania (Advance Release) pp. 291–29

  • Moyano P, del Pino J, Anadon MJ, Díaz MJ, Gómez G, Frejo MT (2017) Toxicogenomic profile of apoptotic and necrotic SN56 basal forebrain cholinergic neuronal loss after acute and long-term chlorpyrifos exposure. Neurotoxicol Teratol 59:68–73

    CAS  Google Scholar 

  • Muendo M, Hanai Y, Kameda Y, Masunaga S (2006) Polycyclic aromatic hydrocarbons in urban air: concentration levels, patterns, and source analysis in Nairobi, Kenya. Environ Forensics 7:147–157

    CAS  Google Scholar 

  • Munyeza CF, Osano AM, Maghanga JK, Forbes PBC (2020) Polycyclic aromatic hydrocarbon gaseous emissions from household cooking devices: a Kenya case study. Environmental Toxicology and Chemistry 39(3)

  • Mustafa G, Komatsu S (2016) Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1864(8): 932–944

  • Nadal M, Schuhmacher M, Domingo JL (2004) Levels of PAHs in soil and vegetation samples from Tarragona Country, Spain. Environ Pollut 132:1–11

    CAS  Google Scholar 

  • Nasr HM, El-Demerdash FM, El-Nagar WA (2016) Neuro and renal toxicity induced by chlorpyrifos and abamectin in rats. Environ Sci Pollut Res 23:1852–1859

    CAS  Google Scholar 

  • Nassar HF, Tang N, Kameda T, Toriba A, Khoder MI, Hayakawa K (2011) Atmospheric concentrations of polycyclic aromatic hydrocarbons and selected nitrated derivatives in Greater Cairo. Egypt Atmos Environ 45:7352–7359

    CAS  Google Scholar 

  • Nekhavhambe TJ, Van RT, Fatoki OS (2014) Determination and distribution of polycyclic aromatic hydrocarbons in rivers, surface runoff, and sediments in and around Thohoyandor, Limpopo province South Africa. Water SA 40(3):415–425

    Google Scholar 

  • Ngole-Jeme VM, Fantke P (2017) Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS ONE 12 (2): e0172517 https://doi.org/10.1371/journalpone0172517

  • Nieuwoudt C, Pieters R, Quinn LP, Kylin H, Borgen AR, Bouwman H (2011) Polycyclic aromatic hydrocarbons (PAHs) in soil and sediment from industrial, residential, and agricultural areas in central South Africa: an initial assessment. Soil Sediment Contam 20:188–206

    CAS  Google Scholar 

  • Novakova M, Mackova M, Antosova Z, Viktorova J, Szekeres M, Demnerova K, Macek T (2010) Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of phytoremediation of polychlorinated biphenyls. Bioeng Bugs 1:419–423

    Google Scholar 

  • Odoh CK, Zabbey N, Sam K, Eze CN (2019) Status, progress and challenges of phytoremediation: an African scenario. J Environ Manage 237:365–378. https://doi.org/10.1016/jjenvman201902090

    Article  CAS  Google Scholar 

  • Offiong AEA, Nkanu OU, Efut EN, Uba UJ (2018) Environmental degradation in the Niger Delta area due to petroleum exploration: are we combating the problems? Am J Environ Sci 14(6):266–273. https://doi.org/10.3844/ajessp2018266273

    Article  CAS  Google Scholar 

  • Okpashi VE, Ogugua VN, Ubani CS, Juliet NO (2018) An evaluation of contaminant body burdens in selected fish species: associating toxicity to upgrade the hazard assessment. Jordan J Biol Sci 11:171–177

    CAS  Google Scholar 

  • Onyango AA, Lalah JO, Wandiga SO (2012) The effect of local cooking methods on polycyclic aromatic hydrocarbons (PAHs) contents in beef, goat meat, and pork as potential sources of human exposure in Kisumu City Kenya. Polycyclic Aromatic Compounds 32(5):656–668

    CAS  Google Scholar 

  • Onyena AP, Sam K (2020) A review of the threat of oil exploitation to mangrove ecosystem: insights from Niger Delta Nigeria. Global Ecol Conserv 22:e00961

    Google Scholar 

  • Osuji LC (2012) Petroleum chemistry and toxicology: In Theory and practice, JESO International Publishers, Owerri, Nigeria pp. 723

  • Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environmental Technology & Innovation 5: 10–21 https://doi.org/10.1016/jeti201511001

  • Pegg S, Zabbey N (2013) Oil and water: the Bodo spills and the destruction of traditional livelihood structures in the Niger Delta. Commun Dev J 48:391–405

    Google Scholar 

  • Pongpiachan S (2015) A preliminary study of using polycyclic aromatic hydrocarbons as chemical tracers for traceability in soybean products. Food Control 47:392–400

    CAS  Google Scholar 

  • Pongpiachan S, Hattayanone M, Pinyakong O, Viyakarn V, Chavanich S, Bo C, Khumsup C, Kittikoon I, Hirunyatrakul P (2017a) Quantitative ecological risk assessment of inhabitants exposed to polycyclic aromatic hydrocarbons in terrestrial soils of King George Island. Antarctica Polar Sci 11:19–29

    Google Scholar 

  • Pongpiachan S, Hattayanone M, Suttinun O, Khumsup C, Kittikoon I, Hirunyatrakul P, Cao J (2017b) Assessing human exposure to PM10-bound polycyclic aromatic hydrocarbons during fireworks displays. Atmos Pollut Res 8(5):816–827

    Google Scholar 

  • Pongpiachan S, Hattayanone M, Tipmanee D, Suttinun O, Khumsup C, Kittikoon I, Hirunyatrakul P (2018) Chemical characterization of polycyclic aromatic hydrocarbons (PAHs) in 2013 Rayong oil spill-affected coastal areas of Thailand. Environ Pollut 233:992–1002

    CAS  Google Scholar 

  • Porgo M, Gokyay O (2017) Environmental impacts of gold mining in Essakane site of Burkina Faso. Hum Ecol Risk Assess Int J 23(3):641–654

    CAS  Google Scholar 

  • Pulster EL, Gracia A, Armenteros M, Carr BE, Mrowicki J, Murawski SA (2019) Chronic PAH exposures and associated declines in fish health indices observed for ten grouper species in the Gulf of Mexico. Science of the Total Environment 703: 135551 https://doi.org/10.1016/jscitotenv2019135551

  • Quijano G, Miguel-Romera JA, Bonilla-Morte LM, Figueroa-Gonzáles I (2017) Two-phase partitioning bioreactors for treatment of volatile hydrocarbons In: Heimann, K, Karthikeyan, OP, Muthu, SS (Eds), Biodegradation and bioconversion of hydrocarbons: environmental footprints and eco-design of products and processes Springer, Cham pp. 225–258 https://doi.org/10.1007/978-981-10-0201-4_7

  • Rawash ESA, Mohamed GG, Souya ER, Khalil LH, El-Chaghab GA, El-Gammal MH (2018) Distribution and health hazards of polycyclic aromatic hydrocarbons in Egyptian milk and dairy-based products. Beverages 4(3):63

    CAS  Google Scholar 

  • Rehmann L, Prpich GP, Daugulis AJ (2008) Remediation of PAH contaminated soils: Application of a solid–liquid two-phase partitioning bioreactor. Chemosphere 73(5):798–804

  • Ren C, Wu Y, Zhang S, Wu LL, Liang XG, Chen TH, Zhu ZC, Sojinu SO, Wang JZ (2015) PAHs in sediment cores at main river estuaries of Chaohu Lake: implication for the change of local anthropogenic activities. Environ Sci Pollut Res Inter 22(3):1687–1696

    CAS  Google Scholar 

  • Rhemann L, Prpich GP, Douglas AJ (2008) Remediation of PAH contaminated soils: application of a solid-liquid two-phase partitioning bioreactor. Chemosphere 73(5): 798–804 https://doi.org/10.1016/jchemosphere200806006

  • Røberg S, Stormo SK, Landfald B (2007) Persistence and biodegradation of kerosene in high-arctic intertidal sediment. Mar Environ Res 64: 417–428 https://doi.org/10.1016/jmarenvres200703003

  • Rocha AC, Palma C (2018) Source identification of polycyclic aromatic hydrocarbons in soil sediments: application of different methods. Sci Total Environ 652:1077–1089

    CAS  Google Scholar 

  • Sakshi, Haritash AK. (2020) A comprehensive review of metabolic and genomic aspects of PAH-degradation. Archives of Microbiology. 2020 Oct;202(8):2033–58.

  • Sakshi SSK, Haritash AK (2021) Catabolic enzyme activity and kinetics of pyrene degradation by novel bacterial strains isolated from contaminated soil. Environ Technol Innov 23:101744

    CAS  Google Scholar 

  • Sam K, Coulon F, Prpich G (2016) Working towards an integrated land contamination framework for Nigeria. Sci Total Environ 571:916–925. https://doi.org/10.1016/jscitotenv201607075

    Article  CAS  Google Scholar 

  • Sam K, Coulon F, Prpich G (2017) Management of petroleum hydrocarbon contaminated sites in Nigeria: Current challenges and future direction. Land Use Policy 64:133–144. https://doi.org/10.1016/jlandusepol201701051

    Article  Google Scholar 

  • Sam K, Zabbey N, Onyena AP (2022) Implementing contaminated land remediation in Nigeria: insights from the Ogoni remediation project. Land Use Policy 115:106051

    Google Scholar 

  • Sam K (2022) Contaminated land management policy transfer: drivers and barriers within the Nigerian context. Afr J Environ Sci Technol 16(9):320–334

    Google Scholar 

  • Samuelsson LM, Larsson DG (2008) Contributions from metabolomics to fish research. Mol BioSyst 4:974–979

    CAS  Google Scholar 

  • Schütte P, Franken G, Vasters J, Melcher F, Küster D (2011) The CTC (Certified Trading Chains) mineral certification system: a contribution to supply chain due diligence and good governance in the mining sector of Rwanda and the Great Lakes Region in Central Africa: Hanover, Germany, Bundesanstalt für Geowissenschaften und Rohstoffe, pp. 15

  • Schwitzguébel JP (2017) Phytoremediation of soils contaminated by organic compounds: hype, hope and facts. J Soils Sediments 17:1492–1502. https://doi.org/10.1007/s11368-015-1253-9

    Article  CAS  Google Scholar 

  • Selina M, Banfor IS (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80(7):723–736

    Google Scholar 

  • Shalaby T, Bayoumi Y, Abdalla N, Taha H, Alshaal T, Shehata S, Amer M, Domokos-Szabolcsy É, El-Ramady H (2016) Nanoparticles, soils, plants and sustainable agriculture In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in Food and Agriculture 1 Sustainable Agriculture Reviews, vol 20 Springer, Cham https://doi.org/10.1007/978-3-319-39303-2_10

  • Sharma T (2014) In silico investigation of polycyclic aromatic hydrocarbon against bacterial 1–2 dioxygenase. J Chem Pharm Res 6:873–877

    CAS  Google Scholar 

  • Singh J, Lee BK (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J Environ Manage 170:88–96

    CAS  Google Scholar 

  • Sojinu SO, Wang J, Sonibare O, Zeng EY (2009) Polycyclic aromatic hydrocarbons in sediments and soils from oil exploration areas of the Niger Delta Nigeria. J Hazard Mater 174(1–3):641–647

    Google Scholar 

  • Song M, Chu S, Letcher RJ, Seth R (2006) Fate, partitioning, and mass loading of polybrominated diphenyl ethers (PBDEs) during the treatment processing of municipal sewage. Environ Sci Technol 40:6241–6246

    CAS  Google Scholar 

  • Soto-Viruet Y, Menzie WD, Papp JF, Yager TR (2013) An exploration in mineral supply chain mapping using tantalum as an example: US Geological Survey Open-File Report 2013–1239, pp 51. https://www.pubsusgsgov/of/2013/1239/. Accessed 4 Dec 2021

  • Ssenku JE, Ntale M, Oryem-Origa H (2017) Phytoremediation potential of Leucaena leucocephala (Lam) de Wit for heavy metal-polluted and heavy metal-degraded environments In: Phytoremediation potential of bioenergy plants Kuldeep Bauddh, Bhaskar Singh, John Korstad (Eds), Singapore: Springer pp. 189–209

  • Stocklin-Weinberg R (2017) Learning from artisanal miners: a model for designing training programs with and for the artisanal mining sector (T) University of British Columbia. https://www.openliberaryubcca/cIRcle/collections/24/items/10362391. Accessed 4 Dec 2021

  • Sun C, Zhang J, Ma Q, Chen Y, Ju H (2016) Polycyclic aromatic hydrocarbons (PAHs) in water and sediment from a river basin: sediment-water partitioning, source identification and environmental health risk assessment. Environ Geochem Health 39:63–74

    Google Scholar 

  • Szatyłowicz E, Hawrylik E (2022) Assessment of migration of PAHs contained in soot of solid fuel combustion into the aquatic environment. Water 14(19):3079

    Google Scholar 

  • Tay CK, Biney CA (2013) Levels and sources of polycyclic aromatic hydrocarbons (PAHs) in selected irrigated urban agricultural soils in Accra, Ghana. Environ Earth Sci 68:1773–1782

    CAS  Google Scholar 

  • Taylor ET, Nakai S (2012) Monitoring the levels of toxic air pollutants in the ambient air of Freetown, Sierra Leone. Afr J Environ Sci Technol 6:283–292

    CAS  Google Scholar 

  • Teng Y, Shen Y, Luo Y, Sun X, Sun M, Fu D, Li Z, Christie P (2011) Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. J Hazard Mater 186:1271–1276

    CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup Nano Today 1, pp. 44–48

  • Tripathi V, Edrisi SA, Chaurasia R, Pandey KK, Dinesh D, Srivastava R, Srivastava P, Abhilash PC (2019) Restoring HCHs polluted land as one of the priority activities during the UN-International Decade on Ecosystem Restoration (2021–2030): a call for global action. Sci Total Environ 689:1304–1315. https://doi.org/10.1016/jscitotenv201906444

    Article  CAS  Google Scholar 

  • Uche EC, Dadrasnia A (2017) Biodegradation of hydrocarbons In: Heimann, K, Karthikeyan, OP, Muthu, SS (Eds), Biodegradation and bioconversion of hydrocarbons: environmental footprints and eco-design of products and processes Springer, Cham pp. 105–135 https://doi.org/10.1007/978-981-10-0201-4_3

  • UNEP (2011) Environmental assessment of Ogoniland, United Nations Environment Programme, Nairobi, 257. http://wwwuneporg/nigeria

  • UNEP (2012) Analysis of formalization approaches in the artisanal and small-scale gold mining sector based on experiences in Ecuador, Mongolia, Peru, Tanzania and Uganda United Nations Environment Programme, Division of Technology, Industry and Economics (DTIE) Chemicals Branch, Geneva, Switzerland

  • USEPA (2014) Toxic and priority pollutants under the Clean Water Act. Accessed on December 12, 2022. https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act#priority

  • Van Jaarsveld JA, Van Pul WA, De Leeuw FA (1997) Modelling transport and deposition of persistent organic pollutants in the European region. Atmos Environ 31(7):1011–1024

  • Viant MR (2008) Recent developments in environmental metabolomics Molecular Biosystems 4: 980–986

  • Wafa A, Mohammed L, Boumedienne M, Kheloufi B, Pascal S (2017) Evaluation of the phytoremediation potential of Arundo donax Linn for nickel contaminated soil. Int J Phytoremediation 19(4):377–386

    Google Scholar 

  • Wakeham SG, Canuel EA (2015) Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation. Environ Sci Pollut Res 23:10426–10442. https://doi.org/10.1007/s11356-015-5402-x

    Article  CAS  Google Scholar 

  • Wania F, Mackay D (1996) Peer reviewed: tracking the distribution of persistent organic pollutants. Environ Sci Technol 30(9):390A–396A

  • Wang C, Meng Z, Yao P, Zhang L, Wang Z, Lv Y, Tian Y, Feng Y (2019) Sources-specific carcinogenicity and mutagenicity of PM2 5-bound PAHs in Beijing, China: variations of contributions under diverse anthropogenic activities. Ecotoxicol Environ Saf 183:109552

    CAS  Google Scholar 

  • Wang C, Zou X, Zhao Y, Li B, Song Q, Li Y, Yu W (2016a) Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in the water and suspended sediments from the middle and lower reaches of the Yangtze River, China. Environ Sci Pollut Res 23:17158–17170

    CAS  Google Scholar 

  • Wang SY, Kuo YC, Hong A, Chang YM, Kao CM (2016b) Bioremediation of diesel and lubricant oil-contaminated soils using enhanced land farming system. Chemosphere 164:558–567

    CAS  Google Scholar 

  • Wang YB, Liu CW, Kao YH, Jang CS (2015) Characterization and risk assessment of PAH-contaminated river sediment by using advanced multivariate methods. Sci Total Environ 524:63–73

    Google Scholar 

  • Wu Y, Teng Y, Li Z, Liao X, Luo Y (2008) Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol Biochem 40:789–796. https://doi.org/10.1016/jsoilbio200710013

    Article  CAS  Google Scholar 

  • Wu Y, Zhu Q, Zeng J, Ding Q (2016) Effects of pH and polycyclic aromatic hydrocarbon pollution on thaumarchaeotal community in agricultural soils. J Soils Sediments 16(7):1960–1969. https://doi.org/10.1007/s11368-016-1390-9

    Article  CAS  Google Scholar 

  • Yang SZ, Jin HJ, Wei Z, He RX, Ji YJ, Li XM, Yu SP (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19: 371–381 https://doi.org/10.1016/S1002-0160(09)60128-4

  • Yogaswara D, Wulandari I, Falahudin D (2020) Determination of polycyclic aromatic hydrocarbons (PAHs) in the brackish water and sediments of citarum irrigation system, Pakis E3S Web of Conferences, 147 https://doi.org/10.1051/e3sconf/202014702002

  • Younes MA, Nicaise LA, Bertrand MB (2016) Polymerization degree of phytochelation in contaminated soil phytoremediation of manganese in Hibiscus sabdariffa Linn Var Sabdariffa. Eur Scientific J 12 (33): 482–492 https://doi.org/10.19044/esj2016v12n33p482

  • Zabbey N, Sam K, Onyebuchi ATAT (2017) Remediation of contaminated lands in the Niger Delta, Nigeria: Prospects and challenges. Sci Total Environ 586:952–965. https://doi.org/10.1016/jscitotenv201702075

    Article  CAS  Google Scholar 

  • Zabbey N, Uyi H (2014) Community responses of intertidal soft bottom macrozoobenthos to oil pollution in a tropical mangrove ecosystem, Niger Delta, Nigeria. Marine Pollution Bulletin 82: 167–174 https://doi.org/10.1016/jmarpolbul201403002

  • Zhang J, Yin R, Lin X, Liu W, Chen R, Li X (2010) Interactive effect of biosurfactant and microorganism to enhance phytoremediation for removal of aged polycyclic aromatic hydrocarbons from contaminated soils. J Heal Sci 56:257–266. https://doi.org/10.1248/jhs56257

    Article  CAS  Google Scholar 

  • Zhang L, Li P, Gong Z, Li X (2008) Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light. J Hazard Mater 158:478–484

    CAS  Google Scholar 

Download references

Acknowledgements

All authors are grateful to the anonymous reviewers who helped to improve the quality of our work.

Author information

Authors and Affiliations

Authors

Contributions

K.S., A.P.O: conceptualization, methodology, visualization, investigation, supervision, writing original draft preparation, review, and editing. Writing—review and editing N.Z., C.K.O., G.N.N., D.K.N., L.C.O., and D.I.L.

Corresponding author

Correspondence to Amarachi P. Onyena.

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Thomas D. Bucheli

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Continuous PAH contamination threatens the vision of the United Nations Decade on Ecosystem Restoration.

Adopting emerging green technology for PAH remediation in Africa is crucial.

Remediation should aim to achieve low greenhouse gas emissions and net environmental benefits.

Lack of best applicable technology and limited expertise are the key challenges.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sam, K., Onyena, A.P., Zabbey, N. et al. Prospects of emerging PAH sources and remediation technologies: insights from Africa. Environ Sci Pollut Res 30, 39451–39473 (2023). https://doi.org/10.1007/s11356-023-25833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-25833-9

Keywords

Navigation