Skip to main content

Advertisement

Log in

Analysis of spatial distribution characteristics and main influencing factors of heavy metals in road dust of Tianjin based on land use regression models

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Land use regression (LUR) models are mainly used for the simulation and prediction of conventional atmospheric pollutants. Whether the LUR models can be expanded to study more toxic and hazardous pollutants (such as heavy metals) remains to be verified. Combined with the factors of road, land use type, population, pollution enterprise, meteorology, and terrain, the LUR models were used to simulate the spatial distribution characteristics of heavy metals in road dust and determine the main influencing factors. Samples of road surface dust were collected from 144 evenly distributed points in Tianjin, China, with 108 modelling points and 36 verification points. The R2 values of the LUR models of Cd, Cr, Cu, Ni, and Pb contents were 0.301, 0.412, 0.399, 0.496, and 0.377, and their error rates were 2.72%, 4.96%, 4.64%, 8.91%, and 4.94%, respectively. The error rates of the kriging interpolation models were 3.33%, 6.50%, 5.14%, 18.30%, and 22.87%, which were all greater than those of the LUR models. The estimation effect of the LUR models was more refined than that of the kriging interpolation models. The contents of most heavy metals (except Ni) in road dust of the central area in Tianjin were generally higher than those of the surrounding areas. The heavy metal contents in road dust of Tianjin were mainly affected by road variables and meteorological variables. The LUR models were suitable for small-scale spatial prediction of heavy metals in urban road dust within urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

Download references

Acknowledgements

We sincerely thank the editor and the anonymous reviewers for their insightful comments and suggestions.

Funding

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant No. 41301221).

Author information

Authors and Affiliations

Authors

Contributions

BH and XY conceived the idea; BH and TA organized the data and designed the model; JZ and XY performed the data analysis and interpretation; BH, XY, and TA wrote the paper and provided feedback to all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Beibei Hu.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27.5 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., An, T., Hu, B. et al. Analysis of spatial distribution characteristics and main influencing factors of heavy metals in road dust of Tianjin based on land use regression models. Environ Sci Pollut Res 30, 837–848 (2023). https://doi.org/10.1007/s11356-022-22151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-22151-4

Keywords

Navigation