Skip to main content

Advertisement

Log in

Reconstruction of missing spring discharge by using deep learning models with ensemble empirical mode decomposition of precipitation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A continuous and complete spring discharge record is critical in understanding the hydrodynamic behavior of karst aquifers and the variability of freshwater resources. However, due to equipment errors, failure of observation and other reasons, missing data is a common problem for spring discharge monitoring and further hydrological investigations and data analysis. In this study, a novel approach that integrates deep learning algorithms and ensemble empirical mode decomposition (EEMD) is proposed to reconstruct the missing spring discharge data with a given local precipitation record. Using EEMD, the local precipitation data is decomposed into several intrinsic mode functions (IMFs) from high to low frequencies and a residual function, which are served as the input of convolutional neural network (CNN), long short-term memory (LSTM), and hybrid CNN-LSTM models to reconstruct the missing discharge data. Evaluation metrics, including root mean squared error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency coefficient (NSE), are calculated to evaluate the reconstruction performance. The monthly spring discharge and precipitation data from March 1978 to October 2021 collected at Barton Springs in Texas are used for the validation and evaluation of newly proposed deep learning models. The results indicate that deep learning models coupled with EEMD overperform the models without EEMD and significantly improve the reconstruction results. The LSTM-EEMD model obtains the best reconstruction results among three deep learning algorithms. For models with monthly data, the missing rate affects the reconstruction performance because of the number of data samples: the best reconstruction results are achieved when the missing rate was low. If the missing rate was 50%, the reconstruction results become notably poorer. However, when the daily precipitation and discharge data are used, the models can obtain satisfactory reconstruction results with missing rate ranged from 10 to 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets used and analyzed during this study are available from the corresponding author on reasonable request.

References

Download references

Acknowledgements

The insightful comments from Dr. Marcus Schulz (Editor) and anonymous reviewers greatly improve this manuscript and are appreciated.

Author information

Authors and Affiliations

Authors

Contributions

RZ: conceptualization, resources, methodology, validation, formal analyses, and writing; YZ: methodology, review, and editing.

Corresponding author

Correspondence to Renjie Zhou.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Marcus Schulz

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Zhang, Y. Reconstruction of missing spring discharge by using deep learning models with ensemble empirical mode decomposition of precipitation. Environ Sci Pollut Res 29, 82451–82466 (2022). https://doi.org/10.1007/s11356-022-21597-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21597-w

Keywords

Navigation