Skip to main content

Advertisement

Log in

Advanced machine learning algorithms for flood susceptibility modeling — performance comparison: Red Sea, Egypt

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Floods are among the most devastating environmental hazards that directly and indirectly affect people’s lives and activities. In many countries, sustainable environmental management requires the assessment of floods and the likely flood-prone areas to avoid potential hazards. In this study, the performance and capabilities of seven machine learning algorithms (MLAs) for flood susceptibility mapping were tested, evaluated, and compared. These MLAs, including support vector machine (SVM), random forest (RF), multivariate adaptive regression spline (MARS), boosted regression tree (BRT), functional data analysis (FDA), general linear model (GLM), and multivariate discriminant analysis (MDA), were tested for the area between Safaga and Ras Gharib cities, Red Sea, Egypt. A geospatial database was developed with eleven flood-related factors, namely altitude, slope aspect, lithology, land use/land cover (LULC), slope length (LS), topographic wetness index (TWI), slope angle, profile curvature, plan curvature, stream power index (SPI), and hydrolithology units. In addition, 420 actual flooded areas were recorded from the study area to create a flood inventory map. The inventory data were randomly divided into training group with 70% and validation group with 30%. The flood-related factors were tested with a multicollinearity test, the variance inflation factor (VIF) was less than 2.135, the tolerance (TOL) was more than 0.468, and their importance was evaluated with a partial least squares (PLS) method. The results show that RF performed the best with the highest AUC (area under curve) value of 0.813, followed by GLM with 0.802, MARS with 0.801, BRT with 0.777, MDA with 0.768%, FDA with 0.763, and SVM with 0.733. The results of this study and the flood susceptibility maps could be useful for environmental mitigation, future development activities in the area, and flood control areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will send based on request.

References

  • Abdel Hamid HT, Wenlong W, Qiaomin L (2020) Environmental sensitivity of flash flood hazard using geospatial techniques. Global J Environ Sci Manag 6(1):31–46

    Google Scholar 

  • Abdulelah Al-Sudani Z, Salih SQ, Sharafati A, Yaseen ZM (2019) Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. J Hydrol 573:1–12

    Article  Google Scholar 

  • Abu-Abdullah MM, Youssef AM, Maerz NH, Abu-AlFadail E, Al-Harbi HM, Al-Saadi NS (2020) A flood risk management program of wadi Baysh Dam on the downstream area: an integration of hydrologic and hydraulic models, Jizan Region, KSA. Sustainability 12:1069

    Article  Google Scholar 

  • Adnan RM, Liang Z, Heddam S, Zounemat-Kermani M, Kisi O, Li B (2019) Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs. J Hydrol 586:124371. https://doi.org/10.1016/J.JHYDROL.2019.124371

    Article  Google Scholar 

  • Aertsen W, Kint V, Van Orshoven J, Ozkan K, Muys B (2009) Performance of modelling techniques for the prediction of forest site index: a case study for pine and cedar in the Taurus mountains, Turkey. XIII World Forestry Congress, Buenos Aires, pp 1–12

    Google Scholar 

  • Aertsen W, Kint V, Van Orshoven J, Özkan K, Muys B (2010) Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol Model 221:1119–1130

    Article  Google Scholar 

  • Ahmad D, Afzal M (2020) Flood hazards and factors influencing household flood perception and mitigation strategies in Pakistan. Environ Sci Pollut Res 27:15375–15387. https://doi.org/10.1007/s11356-020-08057-z

    Article  Google Scholar 

  • Ahmad D, Afzal M (2022) Flood hazards and agricultural production risks management practices in flood-prone areas of Punjab,Pakistan. Environ Sci Pollut Res 29:20768–20783. https://doi.org/10.1007/s11356-021-17182-2

    Article  Google Scholar 

  • Ahmadlou M, Karimi M, Alizadeh S, Shirzadi A, Parvinnejhad D, Shahabi H, Panahi M (2019) Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto Int 34(11):1252–1272

    Article  Google Scholar 

  • Ahmedou A, Marion JM, Pumo B (2016) Generalized linear model with functional predictors and their derivatives. J Multivar Anal 146(Supplement C):313–324. https://doi.org/10.1016/j.jmva.2015.10.009

    Article  Google Scholar 

  • Akgun A, Sezer EA, Nefeslioglu HA, Gokceoglu C, Pradhan B (2012) An easy-to-use MATLAB program (MamLand) for the assessment of flood susceptibility using a Mamdani fuzzy algorithm. Comput Geosci 38(1):23–34. https://doi.org/10.1016/j.cageo.2011.04.012

    Article  Google Scholar 

  • Al-Abadi AM (2018) Mapping flood susceptibility in an arid region of southern Iraq using ensemble machine learning classifiers: a comparative study. Arab J Geosci 11(9):218

    Article  Google Scholar 

  • Albers SJ, Déry SJ, Petticrew EL (2016) Flooding in the Nechako River Basin of Canada: a random forest modeling approach to flood analysis in a regulated reservoir system. Can Water Resour J 41:250–260

    Article  Google Scholar 

  • Alexander K, Hettiarachchi S, Ou Y, Sharma A (2019) Can integrated green spaces and storage facilities absorb the increased risk of flooding due to climate change in developed urban environments? J Hydrol 579:124201

    Article  Google Scholar 

  • Ali R, Kuriqi A, Abubaker S, Kisi O (2019) Long-term trends and seasonality detection of the observed flow in Yangtze River using Mann-Kendall and Sen’s innovative trend method. Water 11(9):1855

    Article  Google Scholar 

  • Ali SA, Parvin F, Pham QB, Vojtek M, Vojteková J, Costache R, Linh NTT, Nguyen HQ, Ahmad A, Ghorbani MA (2020) GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: a case of Topľa basin, Slovakia. Ecol Indic 117:106620

    Article  Google Scholar 

  • Al-Juaidi AM, Nassar AM, Al-Juaidi OEM (2018) Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors. Arab J Geosci 11:765. https://doi.org/10.1007/s12517-018-4095-0

    Article  Google Scholar 

  • Asare-Kyei D, Forkuor G, Venus V (2015) Modeling flood hazard zones at the sub-district level with the rational model integrated with GIS and remote sensing approaches. Water. 7:3531–3564

    Article  Google Scholar 

  • Avand M, Moradi H, Ramezanzadeh M (2020) Flood susceptibility mapping using random forest machine learning and generalized Bayesian linear model. J Environ Water Eng 6(1):83–95. https://www.sid.ir/en/journal/ViewPaper.aspx?id=765837. Accessed 9 Mar 2021

    Google Scholar 

  • Bathrellos GD, Skilodimou HD, Chousianitis K, Youssef AM, Pradhan B (2017) Suitability estimation for urban development using multi-hazard assessment map. Sci Total Environ 575:119–134

    Article  CAS  Google Scholar 

  • Battista TD, Fortuna F, Maturo F (2016) BioFTF: an R package for biodiversity assessment with the functional data analysis approach. Ecol Indic 73:726–732

    Article  Google Scholar 

  • Bera A (2017) Estimation of soil loss by USLE model using GIS and remote sensing techniques: a case study of Muhuri River Basin, Tripura, India. Eur J Soil Sci 6(3):206–215. https://doi.org/10.18393/ejss.288350

    Article  Google Scholar 

  • Beven KJ (2011) Rainfall-runoff modelling: the primer. John Wiley & Sons, Hoboken

    Google Scholar 

  • Beven K, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci J 24(1):43–69

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Breiman L, Cutler A (2015) Package ‘randomForest’, 29 (Date/Publication 2015- 10-07).

  • Bubeck P, Thieken AH (2018) What helps people recover from floods? Insights from a survey among flood-affected residents in Germany. Reg Environ Chang 18(1):287–296

    Article  Google Scholar 

  • Bubeck P, Botzen W, Aerts J (2012) A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Anal 32:1481–1495. https://doi.org/10.1111/j.1539-6924.2011.01783.x

    Article  CAS  Google Scholar 

  • Busto Serrano N, Suárez Sánchez A, Sánchez Lasheras F, Iglesias-Rodríguez FJ, Fidalgo Valverde G (2020) Identification of gender differences in the factors influencing shoulders, neck and upper limb MSD by means of multivariate adaptive regression splines (MARS). Appl Ergon 82:102981

    Article  CAS  Google Scholar 

  • Calle ML, Urrea V (2010) Letter to the editor: stability of random forest importance measures. Brief Bioinform 12(1):86–89. https://doi.org/10.1093/bib/bbq011

    Article  Google Scholar 

  • Cao C, Xu P, Wang Y, Chen J, Zheng L, Niu C (2016) Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas. Sustainability 8(9):948

    Article  Google Scholar 

  • Catani F, Lagomarsino D, Segoni S, Tofani V (2013) Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci 13(11):2815–2831

    Article  Google Scholar 

  • Çelik HE, Coskun G, Cigizoglu HK, Ağıralioğlu N, Aydın A, Esin A (2012) The analysis of 2004 flood on kozdere stream in Istanbul. Nat Hazards 63(2):461–477

    Article  Google Scholar 

  • Centre for Research on the Epidemiology of Disasters (CRED) (2020) Natural disasters 2019. CRED School of Public Health Université catholique de Louvain Clos Chapelle-aux-Champs, Bte B1.30.15 1200 Brussels, Belgiums. Retrieved April 25, 2021

  • Ceola S, Laio F, Montanari A (2014) Satellite nighttime lights reveal increasing human exposure to floods worldwide. Geophys Res Lett 41(20):7184–7190

    Article  Google Scholar 

  • Chamroukhi F, Glotin H, Rabouy C (2012) Functional mixture discriminant analysis with hidden process regression for curve classification. ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning 281–286. Bruges (Belgium). Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420

  • Chen W, Xie X, Wang J, Pradhan B, Hong H, Bui DT, Duan Z, Ma J (2017) A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena. 151:147–160

    Article  Google Scholar 

  • Chen W, Li Y, Xue W, Shahabi H, Li S, Hong H, Wang X, Bian H, Zhang S, Pradhan B, BinAhmad B (2020) Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods. Sci Total Environ 701:134979

    Article  CAS  Google Scholar 

  • Choubin B, Mosavi A, Alamdarloo EH, Hosseini FS, Shamshirband S, Dashtekian K, Ghamisi P (2019) Earth fissure hazard prediction using machine learning models. Environ Res 179(Pt A):108770

    Article  CAS  Google Scholar 

  • Choubin B, Abdolshahnejad M, Moradi E, Querol X, Shamshirband S, Ghamisi P, Mosavi A (2020) Spatial hazard assessment of the PM10 using machine learning models in Barcelona, Spain. Sci Total Environ 701:134474

    Article  CAS  Google Scholar 

  • Chu H, Wu W, Wang QJ, Nathan R, Wei J (2020) An ANN-based emulation modelling framework for flood inundation modelling: application, challenges and future directions. Environ Model Softw 124:104587

    Article  Google Scholar 

  • Chung C-JF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472. https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b

    Article  Google Scholar 

  • Conoco Coral (1987) Geologic map of Egypt. Egyptian General Authority for Petroleum (UNESCO Joint Map Project), 20 Sheets, Scale 1:500 000. Cairo, Egypt

  • Costache R, Arabameri A, Elkhrachy I, Ghorbanzadeh O, Pham QB (2021) Detection of areas prone to flood risk using state-of-the-art machine learning models, Geomatics. Natur Hazards Risk 12(1):1488–1507. https://doi.org/10.1080/19475705.2021.1920480

    Article  Google Scholar 

  • Craven P, Wahba G (1979) Smoothing noisy data with spline functions. Numer Math 31:377–390

    Article  Google Scholar 

  • Dandapat K, Panda GK (2017) Flood vulnerability analysis and risk assessment using analytical hierarchy process model. Earth Syst Environ 3:1627–1646. https://doi.org/10.1007/s40808-017-0388-7

    Article  Google Scholar 

  • Dano UL, Balogun AL, Matori AN, Wan Yusouf K, Abubakar IR, Said Mohamed MA, Aina YA, Pradhan B (2019) Flood susceptibility mapping using GIS-based analytic network process: a case study of Perlis, Malaysia. Water 11(3):615. https://doi.org/10.3390/w11030615

    Article  Google Scholar 

  • Darabi H, Haghighi AT, Mohamadi MA, Rashidpour M, Ziegler AD, Hekmatzadeh AA, Kløve B (2020) Urban flood risk mapping using data-driven geospatial techniques for a flood-prone case area in Iran. Hydrol Res 51(1):127–142. https://doi.org/10.2166/nh.2019.090

    Article  Google Scholar 

  • Deepak S, Rajan G, Jairaj PG (2020) Geospatial approach for assessment of vulnerability to flood in local self governments. Geoenviron Disasters 7:35. https://doi.org/10.1186/s40677-020-00172-w

    Article  Google Scholar 

  • Deichmann J, Eshghi A, Haughton D, Sayek S, Teebagy N (2002) Application of multiple adaptive regression splines (MARS) in direct response modeling. J Interact Mark 16:15–27

    Article  Google Scholar 

  • Dodangeh E, Choubin B, Eigdir AN, Nabipour N, Panahi M, Shamshirband S, Mosavi A (2020) Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. Sci Total Environ 705:135983

    Article  CAS  Google Scholar 

  • Döpke J, Fritsche U, Pierdzioch C (2017) Predicting recessions with boosted regression trees. Int J Forecast 33:745–759

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2012) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Dumbser M, Fambri F, Gaburro E, Reinarz A (2020) On GLM curl cleaning for a first order reduction of the CCZ4 formulation of the Einstein field equations. J Comput Phys 404:109088

    Article  Google Scholar 

  • Echogdali FZ, Boutaleb S, Jauregui J, Elmouden A (2018) Cartography of flooding hazard in semi-arid climate: the case of Tata Valley (South-East of Morocco). J Geogr Nat Disast 8:214. https://doi.org/10.4172/2167-0587.1000214

    Article  Google Scholar 

  • Eini M, Kaboli HS, Rashidian M, Hedayat H (2020) Hazard and vulnerability in urban flood risk mapping: machine learning techniques and considering the role of urban districts. Int J Disaster Risk Reduct 50:101687

    Article  Google Scholar 

  • El-Ghani MMA, Huerta-Martínez FM, Hongyan L, Qureshi R (2017) Plant responses to hyperarid desert environments. Springer, Cham, pp 415–470

    Book  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  CAS  Google Scholar 

  • Elkhrachy I, Pham QB, Costache R, Mohajane M, Ur Rahman K, Shahabi H, Linh NTT, Anh DT (2021) Sentinel-1 remote sensing data and Hydrologic Engineering Centres River Analysis System two-dimensional integration for flash flood detection and modelling in New Cairo City, Egypt. Flood Risk Manag 14(2):e12692. https://doi.org/10.1111/jfr3.12692

    Article  Google Scholar 

  • Ezz H (2017) The utilization of GIS in revealing the reasons behind flooding Ras Gharib City, Egypt. Int J Eng Res Afr 31:135–142

    Article  Google Scholar 

  • Federici PR, Puccinelli A, Cantarelli E, Casarosa N, Avanzi GDA, Falaschi F, Giannecchini R, Pochini A, Ribolini A, Bottai M, Salvati N (2007) Multidisciplinary investigations in evaluating landslide susceptibility: an example in the Serchio River valley (Italy). Quat Int 171–172:52–63

    Article  Google Scholar 

  • Feng Q, Liu J, Gong J (2015) Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier—a case of Yuyao, China. Water 7:1437–1455

    Article  Google Scholar 

  • Fotovatikhah F, Herrera M, Shamshirband S, Chau K-W, Ardabili Faizollahzadeh S, Piran MJ (2018) Survey of computational intelligence as basis to big flood management: challenges, research directions and future work. Eng Appl Comp Fluid Mech 12(1):411–437. https://doi.org/10.1080/19942060.2018.1448896

    Article  Google Scholar 

  • Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97:611–631

    Article  Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232

    Article  Google Scholar 

  • Getahun YS, Gebre SL (2015) Flood hazard assessment and mapping of flood inundation area of the Awash River Basin in Ethiopia using GIS and HEC-GeoRAS/HEC-RAS model. J Civil Environ Eng 5(4):1

    Google Scholar 

  • Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena SR, Tiede D, Aryal J (2019) Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens 11:196

    Article  Google Scholar 

  • Gizaw MS, Gan TY (2016) Regional flood frequency analysis using support vector regression under historical and future climate. J Hydrol 538:387–398

    Article  Google Scholar 

  • Gokceoglu C, Sonmez H, Nefeslioglu HA, Duman TY, Can T (2005) The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Eng Geol 81:65–83

    Article  Google Scholar 

  • Hair J, Anderson R, Tatham RL, Black WC (1998) Multivariate data analysis, 5th edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning; data mining, inference, and prediction. Springer, New York

    Google Scholar 

  • Hastie T, Tibshiran R, Leisch F, Hornik K, Ripley BD (2017) Mixture and fexible discriminant analysis. https://cran.r-project.org/web/packages/mda/mda.pdf. Accessed 10 May 2021

  • Hawryło P, Bednarz B, Wężyk P, Szostak M (2018) Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sentinel-2. Eur J Remote Sens 51(1):194–204. https://doi.org/10.1080/22797254.2017.1417745

    Article  Google Scholar 

  • Hermas E, Gaber A, El Bastawesy M (2021) Application of remote sensing and GIS for assessing and proposing mitigation measures in flood-affected urban areas, Egypt. J Remote Sens Space Sci 24(1):119–130. https://doi.org/10.1016/j.ejrs.2020.03.002

    Article  Google Scholar 

  • Hjort J, Luoto M (2013) Statistical methods for geomorphic distribution modeling. Treatise Geomorphol 2:59–73

    Article  Google Scholar 

  • Hölting B, Coldewey WG (2019) Hydrogeology. Surface water infltration. Springer, Berlin, pp 33–37

    Book  Google Scholar 

  • Huang X-D, Wang L, Han P-P, Wang W-C (2018) Spatial and temporal patterns in nonstationary flood frequency across a forest watershed: linkage with rainfall and land use types. Forests 9:339. https://doi.org/10.3390/f9060339

    Article  Google Scholar 

  • Huang K, Li X, Liu X, Seto KC (2019) Projecting global urban land expansion and heat island intensification through 2050. Environ Res Lett 14(11):114037

    Article  Google Scholar 

  • Islam ARMT, Talukdar S, Mahato S, Kundu S, Kutub Eibek KU, Pham QB, Kuriqi A, Linh NTT (2021) Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front 12(3):101075

    Article  Google Scholar 

  • Kanani-Sadata Y, Arabsheibani R, Karimipour F, Nasseri M (2019) A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. J Hydrol 572:17–31. https://doi.org/10.1016/j.jhydrol.2019.02.034

    Article  Google Scholar 

  • Karlsson CS, Kalantari Z, Mörtberg U, Olofsson B, Lyon SW (2017) Natural hazard susceptibility assessment for road planning using spatialmulti-criteria analysis. Environ Manag 60(5):823–851

    Article  Google Scholar 

  • Kavzoglu T, Colkesen I, Sahin EK (2019) Machine learning techniques in landslide susceptibility mapping: a survey and a case study. In: Landslides: theory, practice and modelling. Springer, Berlin, pp 283–301. https://doi.org/10.1007/978-3-319-77377-3_13

    Chapter  Google Scholar 

  • Kenyon P (2007) Climate connections: Algeria vs. the Sahara, NPR’s climate connections series with National Geographic. http://www.npr.org/templates/story/story.php?storyId%C2%BC12903558. Accessed 10 May 2021

  • Kéry M, Royle JA (2016) Linear models, generalized linear models (GLMs), and random effects models: the components of hierarchical models. In: Kéry M, Royle JA (eds) Applied hierarchical modeling in ecology. Academic Press, Boston, pp 79–122

    Chapter  Google Scholar 

  • Khan I, Lei H, Shah AA, Khan I, Muhammad I (2021) Climate change impact assessment, flood management, and mitigation strategies in Pakistan for sustainable future. Environ Sci Pollut Res 28:29720–29731. https://doi.org/10.1007/s11356-021-12801-4

    Article  Google Scholar 

  • Kia MB, Pirasteh S, Pradhan B, Mahmud AR, Sulaiman WNA, Moradi A (2012) An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ Earth Sci 67:251–264. https://doi.org/10.1007/s12665-011-1504-z

    Article  Google Scholar 

  • Kim JC, Lee S, Jung HS, Lee S (2018) Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea. Geocarto Int 33:1000–1015

    Article  Google Scholar 

  • Komolafe AA, Herath S, Avtar R (2018) Methodology to assess potential flood damages in urban areas under the influence of climate change. Nat Hazards Rev 19(2):05018001

    Article  Google Scholar 

  • Kourgialas NN, Karatzas GP (2011) Flood management and a GIS modelling method to assess flood-hazard areas-a case study. Hydrol Sci J 56:212–225. https://doi.org/10.1080/02626667.2011.555836

    Article  Google Scholar 

  • Laity JE (2008) Deserts and desert environments. Wiley-Blackwell, Oxford, p 360

    Google Scholar 

  • Lawal DU, Matori AN, Hashim AM, Wan Yusof K, Chandio IA (2012) Detecting food susceptible areas using GIS-based analytic hierarchy process. In: In: Proceedings of the 2012 international conference on future environment and energy IPCBEE, Kuala Lumpur, 28th edn. IACSIT Press, Singapore, pp 1–5

    Google Scholar 

  • Li D, Zhu X, Huang G, Feng H, Zhu S, Li X (2022, 2022) A hybrid method for evaluating the resilience of urban road traffic network under flood disaster: an example of Nanjing, China. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-19142-w

  • Liu J, Xu Z, Chen F, Chen F, Zhang L (2019) Flood hazard mapping and assessment on the Angkor World Heritage Site, Cambodia. Remote Sens 11:98. https://doi.org/10.3390/rs11010098

    Article  CAS  Google Scholar 

  • Lombardo F, Obach RS, DiCapua FM, Bakken GA, Lu J, Potter DM, Zhang Y (2006) A hybrid mixture discriminant analysis–random forest computational model for the prediction of volume of distribution of drugs in human. J Med Chem 49(7):2262–2267

    Article  CAS  Google Scholar 

  • Lowry PB, Gaskin J (2014) Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: when to choose it and how to use it. IEEE Trans Prof Commun 57:123–146

    Article  Google Scholar 

  • Lu ZQJ (2007) Nonparametric functional data analysis: theory and practice. Technometrics. https://doi.org/10.1198/tech.2007.s483

  • Mabuku MP, Senzanje A, Mudhara M, Jewitt GPW, Mulwafu W (2018) Rural households’ flood preparedness and social determinants in Mwandi district of Zambia and Eastern Zambezi Region of Namibia. Int J Disaster Risk Reduct 28:284–297. https://doi.org/10.1016/J.IJDRR.2018.03.014

    Article  Google Scholar 

  • Mahmood S, Rahman AU (2019) Flash flood susceptibility modeling using geo-morphometric and hydrological approaches in Panjkora Basin, Eastern Hindu Kush, Pakistan. Environ Earth Sci 78(1):43

    Article  Google Scholar 

  • Mandal SP, Chakrabarty A (2016) Flash flood risk assessment for upper Teesta river basin: using the hydrological modeling system (HEC-HMS) software. Model Earth Syst Environ 2:59

    Article  Google Scholar 

  • Manfreda S, Di Leo M, Sole A (2011) Detection of flood-prone areas using digital elevation models. J Hydrol Eng 16(10):781–790

    Article  Google Scholar 

  • Marjanović M, Kovačević M, Bajat B, Voženílek V (2011) Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol 123(3):225–234

    Article  Google Scholar 

  • Martens H, Martens M (2000) Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Qual Prefer 11:5–16 27

    Article  Google Scholar 

  • Marzban C (2004) The ROC curve and the area under it as performance measures. Weather Forecast 19:1106–1114. https://doi.org/10.1175/825.1

    Article  Google Scholar 

  • Mathew J, Jha VK, Rawat GS (2009) Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides 6:17–26. https://doi.org/10.1007/s10346-008-0138-z

    Article  Google Scholar 

  • Meles MB, Younger SE, Jackson CR, Du E, Drover D (2020) Wetness index based on landscape position and topography (WILT): modifying TWI to reflect landscape position. J Environ Manag 255:109863

    Article  Google Scholar 

  • Menard S (2001) Applied logistic regression analysis, 2nd edn. Sage Publication, Thousand Oaks, pp 1–101 ISBN 0-7619-2208-3

    Google Scholar 

  • Meraj G, Romshoo SA, Yousuf AR, Altaf S, Altaf F (2015) Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Nat Hazards 77(1):153–175

    Article  Google Scholar 

  • Micheletti N, Foresti L, Robert S, Leuenberger M, Pedrazzini A, Jaboyedoff M, Kanevski M (2014) Machine learning feature selection methods for landslide susceptibility mapping. Math Geosci 46:33–57. https://doi.org/10.1007/s11004-013-9511-0

    Article  Google Scholar 

  • Mishra K, Sinha R (2020) Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: a hydro-geomorphic approach. Geomorphology 350:106861

    Article  Google Scholar 

  • Moawad BM (2013) Analysis of the flash flood occurred on 18 January 2010 in wadi El Arish, Egypt (a case study). Geomatics Nat Hazards Risk 4(3):254–274

    Article  Google Scholar 

  • Moawad BM, Abdel Aziz AO, Mamtimin B (2016) Flash floods in the Sahara: a case study for the 28 January 2013 flood in Qena, Egypt. Geomatics Natur Hazards Risk 7(1):215–236. https://doi.org/10.1080/19475705.2014.885467

    Article  Google Scholar 

  • Mosavi A, Golshan M, Janizadeh S, Choubin B, Melesse AM, Dineva AA (2020) Ensemble models of GLM, FDA, MARS, and RF for flood and erosion susceptibility mapping: a priority assessment of sub-basins. Geocarto Int. https://doi.org/10.1080/10106049.2020.1829101

  • Muñoz P, Orellana-Alvear J, Willems P, Célleri R (2018) Flash-flood forecasting in an Andean Mountain catchment—development of a step-wise methodology based on the random forest algorithm. Water 10:1519

    Article  Google Scholar 

  • Nachappa TG, Piralilou ST, Gholamnia K, Ghorbanzadeh O, Rahmati O, Blaschke T (2020) Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer theory. J Hydrol 590:125275

    Article  Google Scholar 

  • Naimi B, Araújo MB (2016) sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39(4):368–375

    Article  Google Scholar 

  • Nasiri Aghdam I, Varzandeh MHM, Pradhan B (2016) Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran). Environ Earth Sci 75(7):1–20

    Google Scholar 

  • Nicu IC (2018) Application of analytic hierarchy process, frequency ratio, and statistical index to landslide susceptibility: an approach to endangered cultural heritage. Environ Earth Sci 77(3):79. https://doi.org/10.1007/s12665-018-7261-5

    Article  Google Scholar 

  • Norallahi M, Kaboli HS (2021) Urban flood hazard mapping using machine learning models: GARP, RF, MaxEnt and NB. Natur Hazards: J Int Soc Prev Mitigation Natur Hazards Springer; Int Soc Prev Mitigation Natur Hazards 106(1):119–137. https://doi.org/10.1007/s11069-020-04453-3

    Article  Google Scholar 

  • Ozdemir A, Altural T (2013) A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan mountains,SW Turkey. J Asian Earth Sci 64:180–197

    Article  Google Scholar 

  • Pal R, Pani P (2016) Seasonality, barrage (Farakka) regulated hydrology and food scenarios of the Ganga River: a study based on MNDWI and simple Gumbel model. Model Earth Syst Environ 2:57. https://doi.org/10.1007/s40808-016-0114-x

    Article  Google Scholar 

  • Park S, Kim J (2019) Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance. Appl Sci 9:942

    Article  Google Scholar 

  • Park I, Lee J, Saro L (2014) Ensemble of ground subsidence hazard maps using fuzzy logic. Open Geosci 6:207–218

    Article  Google Scholar 

  • Park S, Hamm S-Y, Kim J (2019) Performance evaluation of the GIS-based data-mining techniques decision tree, random forest, and rotation forest for landslide susceptibility modeling. Sustainability 11:5659

    Article  Google Scholar 

  • Paul GC, Saha S, Hembram TK (2019) Application of the GIS-based probabilistic models for mapping the flood susceptibility in Bansloi sub-basin of Ganga-Bhagirathi River and their comparison remote sensing. Earth Syst Sci 2(2–3):120–146

    Google Scholar 

  • Payne RA (2015) Guide to regression, nonlinear and generalized linear models in Genstat, 18th edn. VSN International, Hemel Hempstead

    Google Scholar 

  • Petley DN (2008) The global occurrence of fatal landslides in 2007, Geophysical research abstract. EGU Genl Assembl 10(3):EGU2008-A-10487 1607-7962/gra/EGU2008-A-10487

    Google Scholar 

  • Phillips TH, Baker ME, Lautar K, Yesilonis I, Pavao-Zuckerman MA (2019) The capacity of urban forest patches to infiltrate stormwater is influenced by soil physical properties and soil moisture. J Environ Manag 246:11–18

    Article  Google Scholar 

  • Rahmati O, Yousefi S, Kalantari Z, Uuemaa E, Teimurian T, Keesstra S, Pham TD, Tien Bui D (2019) Multi-hazard exposure mapping using machine learning techniques: a case study from Iran. Remote Sens 11:1943. https://doi.org/10.3390/rs11161943

    Article  Google Scholar 

  • Ramsay JO, Dalzell CJ (1991) Some tools for functional data analysis. J R Stat Soc Series B (Methodological) 53(3):539–572

    Google Scholar 

  • Rau P, Bourrel L, Labat D, Ruelland D, Frappart F, Lavado W, Felipe O (2019) Assessing multidecadal runoff (1970–2010) using regional hydrological modelling under data and water scarcity conditions in Peruvian Pacific catchments. Hydrol Process 33(1):20–35

    Article  Google Scholar 

  • Ray A, Dhir A, Bala PK, Kaur P (2019) Why do people use food delivery apps (FDA)? A uses and gratification theory perspective. J Retail Consum Serv 51:221–230

    Article  Google Scholar 

  • Ridgeway G, Southworth MH, RUnit S (2013) Package ‘gbm.’. Viitattu 10(2013):40

    Google Scholar 

  • Rodrigues M, De la Riva J (2014) An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environ Model Softw 57:192–201

    Article  Google Scholar 

  • Saha S (2017) Groundwater potential mapping using analytical hierarchical process: a study on Md. Bazar Block of Birbhum District, West Bengal. Spat Inf Res 25:615–626

    Article  Google Scholar 

  • Sahana M, Patel PP (2019) A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India. Environ Earth Sci 78(10):289

    Article  Google Scholar 

  • Sahana M, Rehman S, Sajjad H, Hong H (2020) Exploring effectiveness of frequency ratio and support vector machine models in storm surge flood susceptibility assessment: a study of Sundarban Biosphere Reserve, India. Catena 189:104450

    Article  Google Scholar 

  • Sajedi-Hosseini F, Malekian A, Choubin B, Rahmati O, Cipullo S, Coulon F, Pradhan B (2018) A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci Total Environ 644:954–962

    Article  CAS  Google Scholar 

  • Sanyal J, Lu X (2004) Application of remote sensing in flood management with special reference to monsoon Asia: a review. Nat Hazards 33(2):283–301

    Article  Google Scholar 

  • Sarhadi A, Soltani S, Modarres R (2012) Probabilistic flood inundation mapping of ungauged rivers: linking GIS techniques and frequency analysis. J Hydrol 458–459:68–86. https://doi.org/10.1016/j.jhydrol.2012.06.039

    Article  Google Scholar 

  • Sarkar D, Mondal P (2020) Flood vulnerability mapping using frequency ratio (FR) model: a case study on Kulik river basin, Indo-Bangladesh Barind region. Appl Water Sci 10(1):17

    Article  Google Scholar 

  • Satarzadeh E, Sarraf A, Hajikandi H, Sadeghian MS (2021) Flood hazard mapping in western Iran: assessment of deep learning vis-à-vis machine learning models. Nat Hazards. https://doi.org/10.1007/s11069-021-05098-6

  • Scott AJ, Hosmer DW, Lemeshow S (1991) Applied logistic regression. Biometrics 47:1632

    Article  Google Scholar 

  • Seifi Majdar R, Ghassemian H (2017) Spectral-spatial classification of hyperspectral images using functional data analysis. Remote Sens Lett 8(5):488–497. https://doi.org/10.1080/2150704X.2017.1287973

    Article  Google Scholar 

  • Sellami EM, Maanan M, Rhinane H (2022) Performance of machine learning algorithms for mapping and forecasting of flash flood susceptibility in Tetouan, Morocco. Int Arch Photogramm Remote Sens Spat Inf Sci 56(4/W3-2021):305–313. https://doi.org/10.5194/isprs-archives-XLVI-4-W3-2021-305-2022

    Article  Google Scholar 

  • Sene K (2013) Flash floods: forecasting and warning. Springer, Dordrecht, p 395

    Book  Google Scholar 

  • Sevgen E, Kocaman S, Nefeslioglu HA, Gokceoglu C (2019) A novel performance assessment approach using photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and random forest. Sensors 19(18):3940. https://doi.org/10.3390/s19183940

    Article  Google Scholar 

  • Shi Y, Taalab K, Cheng T (2016) Flood prediction using support vector machines (SVM). In: In: Proceedings of the 24th GIS Research UK (GISRUK) Conference. GIS Research UK (GISRUK), London

    Google Scholar 

  • Siahkamari S, Haghizadeh A, Zeinivand H, Tahmasebipour N, Rahmati O (2018) Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto Int 33(9):927–941

    Article  Google Scholar 

  • Soch J, Meyer AP, Haynes JD, Allefeld C (2017) How to improve parameter estimates in GLM-based fMRI data analysis: cross-validated Bayesian model averaging. NeuroImage 158(Supplement C):186–195. https://doi.org/10.1016/j.neuroimage.2017.06.056

    Article  Google Scholar 

  • Souissi D, Zouhri L, Hammami S, Msaddek MH, Zghibi A, Dlala M (2019) GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int 35(9):991–1017. https://doi.org/10.1080/10106049.2019.1566405

    Article  Google Scholar 

  • Srivastava PK, Han D, Rico-Ramirez MA, Islam T (2014) Sensitivity and uncertainty analysis of mesoscale model downscaled hydro-meteorological variables for discharge prediction. Hydrol Process 28(15):4419–4432

    Article  Google Scholar 

  • Stefanidis S, Stathis D (2013) Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Nat Hazards 68(2):569–585

    Article  Google Scholar 

  • Stevaux JC, de Azevedo MH, Assine ML, Silva A (2020) Changing fluvial styles and backwater flooding along the Upper Paraguay River plains in the Brazilian Pantanal wetland. Geomorphology 350:106906

    Article  Google Scholar 

  • Tabbussum R, Dar AQ (2021) Performance evaluation of artificial intelligence paradigms—artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction. Environ Sci Pollut Res 28:25265–25282. https://doi.org/10.1007/s11356-021-12410-1

    Article  Google Scholar 

  • Tehrany MS, Kumar L, Shabani F (2019) A novel GIS-based ensemble technique for flood susceptibility mapping using evidential belief function and support vector machine: Brisbane, Australia. PeerJ 7:e7653. https://doi.org/10.7717/peerj.7653

    Article  Google Scholar 

  • Thanh Noi P, Kappas M (2018) Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 18:18

    Article  Google Scholar 

  • Torcivia CEG, López NNR (2020) Preliminary morphometric analysis: Río Talacasto Basin, Central Precordillera of San Juan, Argentina. In: Advances in Geomorphology and Quaternary Studies in Argentina. Springer, Cham, pp 158–168

    Chapter  Google Scholar 

  • Turoglu H, Dolke I (2011) Floods and their likely impacts on ecological environment in the Bolaman river basin (Ordu, Turkey). Res J Agric Sci 43(4):167–173

    Google Scholar 

  • Vapnik V (2013) The nature of statistical learning theory. Springer Science & Business Media, Berlin, Heidelberg, Germany

  • Vojtek M, Vojteková J (2019) Flood susceptibility mapping on a national scale in Slovakia using the analytical hierarchy process. Water 11(2):364. https://doi.org/10.3390/w11020364

    Article  Google Scholar 

  • Wagner-Muns IM, Guardiola IG, Samaranayke VA, Kayani WI (2018) A functional data analysis approach to traffic volume forecasting. IEEE Trans Intell Transp Syst 19(3):878–888

    Article  Google Scholar 

  • Wahlstrom M, Guha-Sapir D (2015) The human cost of weather-related disasters 1995–2015. UNISDR, Geneva

    Google Scholar 

  • Wang H, Yang F, Luo Z (2016) An experimental study of the intrinsic stability of random forest variable importance measures. BMC Bioinform 17:60. https://doi.org/10.1186/s12859-016-0900-5

    Article  CAS  Google Scholar 

  • Wang Y, Hong H, Chen W, Li S, Pamučar D, Gigović L, Drobnjak S, Tien Bui D, Duan H (2019) A hybrid GIS multi-criteria decision-making method for flood susceptibility mapping at Shangyou, China. Remote Sens 11:62. https://doi.org/10.3390/rs11010062

    Article  Google Scholar 

  • Wang Y, Fang Z, Hong H, Peng L (2020) Flood susceptibility mapping using convolutional neural network frameworks. J Hydrol 582:124482

    Article  Google Scholar 

  • Waqas H, Lu L, Tariq A, Li Q, Baqa MF, Xing J, Sajjad A (2021) Flash flood susceptibility assessment and zonation using an integrating analytic hierarchy process and frequency ratio model for the Chitral District, Khyber Pakhtunkhwa, Pakistan. Water 13:1650. https://doi.org/10.3390/w13121650

    Article  Google Scholar 

  • Ward RC, Robinson M (2000) Principles of hydrology, 4th edn. McGraw-Hill, Maidenhead

    Google Scholar 

  • Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  • Wu L, He Y, Ma X (2020) Can soil conservation practices reshape the relationship between sediment yield and slope gradient? Ecol Eng 142:105630

    Article  Google Scholar 

  • Xiao T, Yin K, Yao T, Liu S (2019) Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County, Three Gorges Reservoir, China. Acta Geochim 38:654–669. https://doi.org/10.1007/s11631-019-00341-1

    Article  CAS  Google Scholar 

  • Xie H, Dong J, Shen Z, Chen L, Lai X, Qiu J, Chen X (2019) Intra-and inter-event characteristics and controlling factors of agricultural nonpoint source pollution under different types of rainfall-runoff events. Catena 182:104105

    Article  CAS  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85(3):274–287

    Article  Google Scholar 

  • Yamani K, Hazzab A, Sekkoum M, Slimane T (2016) Mapping of vulnerability of flooded area in arid region. Case study: area of Ghardaïa-Algeria. Model. Earth Syst Environ 2:147. https://doi.org/10.1007/s40808-016-0183-x

    Article  Google Scholar 

  • Yang L, Cervone G (2019) Analysis of remote sensing imagery for disaster assessment using deep learning: a case study of flooding event. Soft Comput 23:13393–13408. https://doi.org/10.1007/s00500-019-03878-8

    Article  Google Scholar 

  • Yao X, Tham LG, Dai FC (2008) Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology 101:572–582

    Article  Google Scholar 

  • Youssef AM, Hegab MA (2019) Flood-hazard assessment modeling using multicriteria analysis and GIS: a case study—Ras Gharib Area, Egypt. In: Spatial Modeling in GIS and R for Earth and Environmental Sciences. Elsevier, Amsterdam, pp 229–257. https://doi.org/10.1016/B978-0-12-815226-3.00010-7

    Chapter  Google Scholar 

  • Youssef AM, Abu-Abdullah MM, AlFadail EA, Skilodimou HD, Bathrellos GD (2021) The devastating flood in the arid region a consequence of rainfall and dam failure: case study, Al-Lith flood on 23th November 2018, Kingdom of Saudi Arabia. Z Geomorphol 63(1):115–136

    Article  Google Scholar 

  • Zhang G, Chen W, Li G, Yang W, Yi S, Luo W (2020) Lake water and glacier mass gains in the northwestern Tibetan Plateau observed from multi-sensor remote sensing data: implication of an enhanced hydrological cycle. Remote Sens Environ 237:111554

    Article  Google Scholar 

  • Zhao G, Pang B, Xu Z, Yue J, Tu T (2018) Mapping flood susceptibility in mountainous areas on a national scale in China. Sci Total Environ 615:1133–1142

    Article  CAS  Google Scholar 

  • Zou M, Sun C, Liang S, Sun Y, Li D, Li L, Fan L, Wu L, Xia W (2019) Fisher discriminant analysis for classification of autism spectrum disorders based on folate-related metabolism markers. J Nutr Biochem 64:25–31

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Iran National Science Foundation (INSF) under Grant No. 99011055. Thanks to INSF.

Funding

This study was supported by the Iran National Science Foundation (INSF) under Grant No. 99011055. Thanks to INSF. 

Author information

Authors and Affiliations

Authors

Contributions

AMY, HRP, and BAEl-H designed the experiments, ran models, analyzed the results, and wrote and reviewed the manuscript.

Corresponding author

Correspondence to Hamid Reza Pourghasemi.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, A.M., Pourghasemi, H.R. & El-Haddad, B.A. Advanced machine learning algorithms for flood susceptibility modeling — performance comparison: Red Sea, Egypt. Environ Sci Pollut Res 29, 66768–66792 (2022). https://doi.org/10.1007/s11356-022-20213-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20213-1

Keywords

Navigation