Skip to main content
Log in

Bio-polysaccharide composites mediated degradation of polyaromatic hydrocarbons in a sandy soil using free and immobilized consortium of Kocuria rosea and Aspergillus sydowii

  • Nano-bioremediation Approaches for Sustainable Agriculture
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Based on our previous study in minimal medium, Kocuria rosea and Aspergillus sydowii were identified as the best microbes for degradation of mixture of polyaromatic hydrocarbons (PAHs). The present study reports PAH degradation potential of these microbes in free and immobilized form. PAHs were extracted using QuEChERS-mediated process followed by quantification by high performance liquid chromatography. The microbial consortium of Kocuria rosea + Aspergillus sydowii was formulated in three bio-formulations, namely (i) bentonite-alginate composite beads; (ii) water dispersible granule composite using guar gum-nanobentonite; and (iii) composites of carboxymethyl cellulose-bentonite and were applied in PAH fortified (100 µg g−1) sandy loam soil. Results suggested that degradation data fitted well to first order kinetics as in most of the cases, the values of correlation coefficient (r) were > 0.95. The half-life (t1/2) values for PAHs in the uninoculated control soil were: naphthalene (10.43 d), fluorene (22.43 d), phenanthrene (24.64 d), anthracene (38.47 d), and pyrene (34.34 d). Inoculation of soil with free culture microbial consortium (without or with nutrient) and bio-formulation of degrading cultures enhanced degradation of all PAHs and half-life values were significantly reduced for each PAH: naphthalene (1.76–2.00 d), fluorene (2.52–6.65 d), phenanthrene (4.61–6.37 d), anthracene (9.01–12.22 d), and pyrene (10.98–15.55 d). Among different bio-formulations, guar gum-nanobentonite-based composite exhibited better efficacy for degradation of naphthalene, fluorene, phenanthrene, anthracene, and pyrene. The addition of microbial consortium in PAH fortified soil increased 16S rRNA gene copies of Alphaproteobacteria and Bacteroidetes, compared to the uninoculated, PAH-fortified control. The microbial functional gene assays showed that the gene copies of amoA, nirK, nirS, and anammox increased, suggesting nitrogen regulation in the PAH-fortified soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request. The data related to accession number of bacteria and fungus were deposited into the National Center for Biotechnology Information (NCBI).

References

Download references

Acknowledgements

Ashish Khandelwal is thankful to Department of Science and Technology and Indian Agricultural Research Institute for providing INSPIRE and IARI Senior fellowship for pursing Ph.D.

Author information

Authors and Affiliations

Authors

Contributions

AK: Conduct of experiment, data analysis, and writing. RS: Metagenomics experiment. BR: Design of metagenomics experiment. AD: Biocomposite preparation and assistance. EV: Statistical analysis. TB: QuEChERS method development. LN: Microbe isolation and identification. SBS: Research design. NS: Concept, experiment planning and coordination, and paper correction.

Corresponding author

Correspondence to Neera Singh.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 398 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandelwal, A., Sugavanam, R., Ramakrishnan, B. et al. Bio-polysaccharide composites mediated degradation of polyaromatic hydrocarbons in a sandy soil using free and immobilized consortium of Kocuria rosea and Aspergillus sydowii. Environ Sci Pollut Res 29, 80005–80020 (2022). https://doi.org/10.1007/s11356-022-19252-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19252-5

Keywords

Navigation