Skip to main content

Advertisement

Log in

B-doped SnO2 nanoparticles: a new insight into the photocatalytic hydrogen generation by water splitting and degradation of dyes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Boron-doped SnO2 (B:SnO2) has been synthesized via a facile wet chemical method to deal with increasing energy demand and environment-related issues. Powder XRD confirmed the rutile phase of the synthesized B:SnO2 nanoparticles. Energy dispersive X-ray analysis and elemental mapping confirmed 1% B doping into SnO2 lattice. A red shift was observed during the analysis of Raman and FTIR spectral data. The bands in FTIR and Raman spectra confirmed the in-plane and bridging oxygen vacancies in SnO2 lattice introduced due to B doping. These nanoparticles showed proficiency in photocatalytic hydrogen generation and degradation of crystal violet (CV) and rhodamine B (RhB) dyes. The degradation of CV and RhB dyes in the presence of B:SnO2 NPs and ethane-1,2-diaminetetracetic acid (EDTA) was found to be 83 and ~ 100%, respectively. To escalate the efficiency of dye degradation, the experiment was performed with different sacrificial agents (EDTA, methanol, and triethanolamine). The maximum hydrogen production rate (63.6184 µmol g−1 h−1) was observed for B:SnO2 along with Pd as co-catalyst, and methanol and EDTA solution as sacrificial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Arai T, Yanagida M, Konishi Y, Sugihara H, Sayama K (2008) Utilization of Fe3+/Fe2+ redox for the photodegradation of organic substances over WO3 photocatalyst and for H2 production from the electrolysis of water. Electrochem 76:128–131

    Article  CAS  Google Scholar 

  • Asadzadeh MZ, Köck A, Popov M, Steinhauer S, Spitaler J, Romaner L (2019) Response modeling of single SnO2 nanowire gas sensors. Sens Actuators B 295:22–29

    Article  CAS  Google Scholar 

  • Babu B, Reddy IN, Yoo K, Kim D, Shim J (2018) Bandgap tuning and XPS study of SnO2 quantum dots. Mater Lett 221:211–215

    Article  CAS  Google Scholar 

  • Bagwasi S, Tian B, Zhang J, Nasir M (2013) Synthesis, characterization and application of bismuth and boron co-doped TiO2: a visible light active photocatalyst. Chem Eng J (lausanne) 217:108–118

    Article  CAS  Google Scholar 

  • Berry GD, Pasternak AD, Rambach GD, Smith JR, Schock RN (1996) Hydrogen as a future transportation fuel. Energy 21:289–303

    Article  CAS  Google Scholar 

  • Bhawna CAK, Kumar S, Gupta A, Kumar P, Singh P, Kumar V (2020a) Synthesis, antimicrobial activity and photocatalytic performance of Ce doped SnO2 nanoparticles. Front Nanotechnol 2:11

    Article  Google Scholar 

  • Bhawna GA, Kumar P, Tyagi A, Kumar R, Kumar A, Singh P, Singh RP, Kumar V (2020b) Facile synthesis of N-doped SnO2 nanoparticles: a cocatalyst-free promising photocatalyst for hydrogen generation. ChemistrySelect 5:7775–7782

    Article  CAS  Google Scholar 

  • Bhosale R, Khadka R, Puszynski J, Shende R (2011) H2 generation from two-step thermochemical water-splitting reaction using sol-gel derived SnxFeyOz. J. Renew. Sustain. Energy 3:063104

    Article  CAS  Google Scholar 

  • Botta SG, Navı́o JA, Hidalgo MaC, Restrepo GM, Litter MIJJoP, Chemistry PA (1999) Photocatalytic properties of ZrO2 and Fe/ZrO2 semiconductors prepared by a sol–gel technique. J Photochem Photobiol a: Chem 129:89–99

    Article  CAS  Google Scholar 

  • Chen D, Yang D, Wang Q, Jiang Z (2006) Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind Eng Chem Res 45:4110–4116

    Article  CAS  Google Scholar 

  • Chen Z, Li D, Zhang W, Shao Y, Chen T, Sun M, Fu X (2009) Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation. J Phys Chem C 113:4433–4440

    Article  CAS  Google Scholar 

  • Dosta S, Torrell M, Cano IG, Guilemany J (2012) Functional colored ceramic coatings obtained by thermal spray for decorative applications. J Eur Ceram Soc 32:3685–3692

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  • Galińska A, Walendziewski J (2005) Photocatalytic water splitting over Pt− TiO2 in the presence of sacrificial reagents. Energy Fuels 19:1143–1147

    Article  CAS  Google Scholar 

  • Gombac V, De Rogatis L, Gasparotto A, Vicario G, Montini T, Barreca D, Balducci G, Fornasiero P, Tondello E, Graziani M (2007) TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chem Phys 339:111–123

    Article  CAS  Google Scholar 

  • Gomes Silva C, Juárez R, Marino T, Molinari R, García H (2011) Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J Am Chem Soc 133:595–602

    Article  CAS  Google Scholar 

  • Guo Y-X, Wu P, Cheng W-J (2015) Effect of boron doping on the optoelectronic properties of nanostructure SnO 2 thin film by ultrasonic spray pyrolysis on quartz substrate. J. Mater. Sci.: Mater. Electron 26:4922–4929

    CAS  Google Scholar 

  • Gupta A, Kumar P, Tyagi A, Kumar R, Kumar A, Singh P, Singh R, Kumar V (2020) Facile synthesis of N-doped SnO2 nanoparticles: a cocatalyst-free promising photocatalyst for hydrogen generation. ChemistrySelect 5:7775–7782

    Article  CAS  Google Scholar 

  • Hirakawa T, Nosaka Y (2002) Properties of O2•-and OH• formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 18:3247–3254

    Article  CAS  Google Scholar 

  • Kavan L, Vlckova Zivcova Z, Zlamalova M, Zakeeruddin SM, Grätzel M (2020) Electron-selective layers for dye-sensitized solar cells based on TiO2 and SnO2. J Phys Chem C 124:6512–6521

    Article  CAS  Google Scholar 

  • Kong X-B, Li F, Qi Z-N, Qi L, Yao M-M (2017) Boron-doped tin dioxide films for environmental applications. Surf Rev Lett 24:1750059

    Article  CAS  Google Scholar 

  • Kumar V, Nagarajan R (2012) Thermoluminescence in heavily F-doped of SnO2 nanocrystals. Chem Phys Lett 530:98–101

    Article  CAS  Google Scholar 

  • Kumar V, Govind A, Nagarajan R (2011) Optical and photocatalytic properties of heavily F–-doped SnO2 nanocrystals by a novel single-source precursor approach. Inorg Chem 50:5637–5645

    Article  CAS  Google Scholar 

  • Kumar V, Uma S, Nagarajan R (2014) Optical and magnetic properties of (Er, F) co-doped SnO2 nanocrystals. Turk J Phys 38:450–462

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK, Gupta A, Dwivedi B, Kumar A, Singh P, Deori K (2019) Facile synthesis of Ce–doped SnO2 nanoparticles: a promising photocatalyst for hydrogen evolution and dyes degradation. ChemistrySelect 4:3722–3729

    Article  CAS  Google Scholar 

  • Li L, Meng F, Hu X, Qiao L, Sun CQ, Tian H, Zheng W (2016) TiO2 band restructuring by B and P dopants. PLoS ONE 11:1–14

    Google Scholar 

  • Liu G, Wang L, Sun C, Yan X, Wang X, Chen Z, Smith SC, Cheng H-M, Lu GQ (2009) Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates. Chem Mater 21:1266–1274

    Article  CAS  Google Scholar 

  • Liu T, Wang L, Lu X, Fan J, Cai X, Gao B, Miao R, Wang J, Lv Y (2017) Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn 2 S 4: adsorption, active species, and pathways. RSC Adv 7:12292–12300

    Article  CAS  Google Scholar 

  • Lu X, Tian B, Chen F, Zhang J (2010) Preparation of boron-doped TiO2 films by autoclaved-sol method at low temperature and study on their photocatalytic activity. Thin Solid Films 519:111–116

    Article  CAS  Google Scholar 

  • Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol c: Photochem Rev 12:237–268

    Article  CAS  Google Scholar 

  • Min X, Sun B, Chen S, Fang M, Wu X, Yg L, Abdelkader A, Huang Z, Liu T, Xi K (2019) A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Stor Mater 16:597–606

    Article  Google Scholar 

  • Mohanta D, Barman K, Jasimuddin S, Ahmaruzzaman M (2017) MnO doped SnO2 nanocatalysts: activation of wide band gap semiconducting nanomaterials towards visible light induced photoelectrocatalytic water oxidation. J Colloid Interface Sci 505:756–762

    Article  CAS  Google Scholar 

  • Moon S-C, Mametsuka H, Tabata S, Suzuki E (2000) Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catal Today 58:125–132

    Article  CAS  Google Scholar 

  • Morales J, Sanchez L (1999) Electrochemical behaviour of SnO2 doped with boron and indium in anodes for lithium secondary batteries. Solid State Ion 126:219–226

    Article  CAS  Google Scholar 

  • Mouchaal Y, Khelil A (2019) Optimization of SnO2/Ag nanowire transparent hybrid electrodes for optoelectronic applications. EPJ Appl Phys 87:31302

    Article  CAS  Google Scholar 

  • Nagarajan R, Kumar V, Ahmad S (2012) Anion doped binary oxides, SnO 2, TiO 2 and ZnO: fabrication procedures, fascinating properties and future prospects. Indian J Chem Sect A 51A:145–154

    CAS  Google Scholar 

  • Niu M, Huang F, Cui L, Huang P, Yu Y, Wang Y (2010) Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures. ACS Nano 4:681–688

    Article  CAS  Google Scholar 

  • Patel N, Dashora A, Jaiswal R, Fernandes R, Yadav M, Kothari D, Ahuja B, Miotello A (2015) Experimental and theoretical investigations on the activity and stability of substitutional and interstitial boron in TiO2 photocatalyst. J Phys Chem C 119:18581–18590

    Article  CAS  Google Scholar 

  • Phoon BL, Lai CW, Juan JC, Show P-L, Pan G-T (2019) Recent developments of strontium titanate for photocatalytic water splitting application. Int J Hydrogen Energy 44:14316–14340

    Article  CAS  Google Scholar 

  • Rodríguez-Carvajal J (2007) Introduction to the program FullProf: Rietveld, profile matching and integrated intensities refinement of x-ray and/or neutron data (powder and/or single-crystal). Laboratoire Leon Brillouin

  • Simsek EB (2017) Solvothermal synthesized boron doped TiO2 catalysts: photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Appl. Catal B 200:309–322

    Article  CAS  Google Scholar 

  • Skariah B, Thomas B (2014) Structural and surface analysis of B: SnO2 thin films for gas sensing. J Pure Appl Phys 4:99–109

    Google Scholar 

  • Stambouli V, Labeau M, Matko I, Chenevier B, Renault O, Guiducci C, Chaudouët P, Roussel H, Nibkin D, Dupuis E (2006) Development and functionalisation of Sb doped SnO2 thin films for DNA biochip applications. Sens Actuators B 113:1025–1033

    Article  CAS  Google Scholar 

  • Um J, Kim SE (2014) Homo-junction pn diode using p-type SnO and n-type SnO2 thin films. ECS Solid State Lett 3:P94

    Article  CAS  Google Scholar 

  • Uma S, Singh J, Thakral V (2009) Facile room temperature ion-exchange synthesis of Sn2+ incorporated pyrochlore-type oxides and their photocatalytic activities. Inorg Chem 48:11624–11630

    Article  CAS  Google Scholar 

  • Wang W-K, Chen J-J, Gao M, Huang Y-X, Zhang X, Yu H-Q (2016) Photocatalytic degradation of atrazine by boron-doped TiO2 with a tunable rutile/anatase ratio. Appl. Catal B 195:69–76

    Article  CAS  Google Scholar 

  • Wang X, Di Q, Wang X, Zhao H, Liang B, Yang J (2019) Effect of oxygen vacancies on photoluminescence and electrical properties of (2 0 0) oriented fluorine-doped SnO2 films. Mater. Sci. Eng. B. 250:114433

    Article  CAS  Google Scholar 

  • Xie H, Hou C, Wang H, Zhang Q, Li Y (2017) S, N co-doped graphene quantum dot/TiO 2 composites for efficient photocatalytic hydrogen generation. Nanoscale Res Lett 12:1–8

    Article  CAS  Google Scholar 

  • Xue X, Wang Y, Yang H (2013) Preparation and characterization of boron-doped titania nano-materials with antibacterial activity. Appl Surf Sci 264:94–99

    Article  CAS  Google Scholar 

  • Yamada Y, Yano K, Xu Q, Fukuzumi S (2010) Cu/Co3O4 nanoparticles as catalysts for hydrogen evolution from ammonia borane by hydrolysis. J Phys Chem C 114:16456–16462

    Article  CAS  Google Scholar 

  • Yu J, Chen Z, Wang Y, Ma Y, Feng Z, Lin H, Wu Y, Zhao L, He Y (2018) Synthesis of KNbO 3/gC 3 N 4 composite and its new application in photocatalytic H 2 generation under visible light irradiation. J Mater Sci 53:7453–7465

    Article  CAS  Google Scholar 

  • Zaleska A, Sobczak JW, Grabowska E, Hupka J (2008) Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Appl. Catal B 78:92–100

    Article  CAS  Google Scholar 

  • Zeng Q, Cui Y, Zhu L, Yao Y (2020) Increasing oxygen vacancies at room temperature in SnO2 for enhancing ethanol gas sensing. Mater Sci Semicond Process 111:104962

    Article  CAS  Google Scholar 

  • Zhang B, Tian Y, Zhang J, Cai W (2011) The structural and electrical studies on the boron-doped SnO2 films deposited by spray pyrolysis. Vacuum 85:986–989

    Article  CAS  Google Scholar 

  • Zhao W, Ma W, Chen C, Zhao J, Shuai Z (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-x B x under visible irradiation. J Am Chem Soc 126:4782–4783

    Article  CAS  Google Scholar 

  • Zhao G, Li P, Nong F, Li M, Gao J, Li D (2010) Construction and high performance of a novel modified boron-doped diamond film electrode endowed with superior electrocatalysis. J Phys Chem C 114:5906–5913

    Article  CAS  Google Scholar 

  • Zhao D, Yu Y, Cao C, Wang J, Wang E, Cao YJASS (2015) The existing states of doped B3+ ions on the B doped TiO2. Appl Surf Sci 345:67–71

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author Sanjeev Kumar thanks CSIR (08/694(0004)/2018-EMR-I) for SRF fellowship. Author Bhawna also thanks UGC for Senior Research Fellowship. One of the authors (Jahangeer Ahmed) would like to extend his sincere appreciation to Researchers Supporting Project number (RSP-2021/391), King Saud University, Riyadh, Saudi Arabia. The authors also show gratitude to USIC, DU (India) and SCNS, JNU (India) for instrumentation facilities.

Funding

This study was financed in part by the SERB (YSS/2015/001120) and UGC (No. F.30–109/2015) Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

SK: methodology, validation, formal analysis, investigation, resources, writing—original draft; B: methodology, validation, formal analysis, investigation, resources, writing—original draft; SKY: methodology, validation, formal analysis, investigation, resources, writing—original draft; AG: validation, formal analysis, investigation, writing—review and editing; RK: validation, formal analysis, investigation, writing—review and editing; JA: writing—review and editing; MC: writing—review and editing; S: visualization, validation, writing—review and editing; VK: conceptualization, methodology, validation, formal analysis, investigation, resources, writing—original draft, writing—review and editing, visualization, supervision. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Suhas or Vinod Kumar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Sami Rtimi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Bhawna, Yadav, S.K. et al. B-doped SnO2 nanoparticles: a new insight into the photocatalytic hydrogen generation by water splitting and degradation of dyes. Environ Sci Pollut Res 29, 47448–47461 (2022). https://doi.org/10.1007/s11356-022-18946-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18946-0

Keywords

Navigation