Skip to main content
Log in

Decontamination of real urban sewage—comparison between Fenton and electrochemical oxidation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Advanced oxidation processes have been used for wastewater treatment due to their capacity to reduce the organic loading and for their fast reactions. In this paper, we explore the viability of isolated and sequential use of electrochemical oxidation and Fenton processes into treatment of real raw urban sewage. The electrochemical process was carried out using DSA®-Cl2 electrodes and factorial planning in order to investigate the influence of pH, current density, and electrolyte. Fenton reaction was also used and H2O2 and Fe2+ concentration effects were investigated. The efficiency was estimated by chemical oxygen demand (COD) removal and in the optimized conditions the effluent was characterized by turbidity, suspended/dissolved/total solids, ammonia, chloride ions, free chlorine, nitrite, and potassium analysis and bioassays with Artemia ssp. and Lactuca sativa. The study demonstrated that the use of electrochemical technique followed by Fenton allowed an improvement in the degradation of organic matter and reduction of turbidity and solid content, reaching reductions of 86.8, 96.4, 99.4, 56.1, and 66.7% for COD, turbidity, SS, DS, and TS, respectively. The associated treatment also contributed to the reduction of energy consumption by 74.9%, from the 23.9 kWh m−3 observed during the electrochemical treatment isolated to the 6 kWh m−3 during the associated process. All the treatments presented toxicity reduction, with the electrochemical process achieving the best results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  • Afanga H, Zazou H, Titchou FE, El Gaayda J, Sopaj F, Akbour RA, Hamdani M (2021) Electrochemical oxidation of Naphthol Blue Black with different supporting electrolytes using a BDD/carbon felt cell. J Environ Chem Eng 9:104498. https://doi.org/10.1016/j.jece.2020.104498

    Article  CAS  Google Scholar 

  • Aguas Y, Hicanpie M, Martínez-Piernas AB, Agüera A, Fernández-Ibáñez P, Nahim-Granados S, Polo-López MI (2019) Reclamation of real urban wastewater using solar advanced oxidation processes: an assessment of microbial pathogens and 74 organic microcontaminants uptake in lettuce and radish. Environ Sci Technol 53:9705–9714. https://doi.org/10.1021/acs.est.9b00748

    Article  CAS  Google Scholar 

  • Aquino JM, Rocha-Filho RC, Ruotolo LA, Bocchi N, Biaggio SR (2014) Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chem Eng J 251:138–145

    Article  CAS  Google Scholar 

  • ABNT NBR 16530 (2016) Ecotoxicologia aquática – Toxicidade aguda – Método de ensaio com Artemia sp (Crustacea, Brachiopoda).

  • ASTM D1426–15, Standard test methods for ammonia nitrogen in water, ASTM International, West Conshohocken, PA, 2015.

  • Bhattacharya M, Bandyopadhyay K, Gupta A (2021) Design of a cost-effective electrochlorination system for point-of-use water treatment. Environ Eng Res 26:200437

    Article  Google Scholar 

  • Brillas E, Martinez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2014.11.016

    Article  Google Scholar 

  • Bruguera-Casamada C, Sirés I, Brillas E, Araujo RM (2017) Effect of electrogenerated hydroxyl radicals, active chlorine and organic matter on the electrochemical inactivation of Pseudomonas aeruginosa using BDD and dimensionally stable anodes. Sep Purif Technol 178:224–231

    Article  CAS  Google Scholar 

  • Burgos-Castillo RC, Sirés I, Sillanpää M, Brillas E (2018) Application of electrochemical advanced oxidation to bisphenol A degradation in water Effect of sulfate and chloride ions. Chemosphere 194(2018):812–820

    Article  CAS  Google Scholar 

  • Clematis D, Cerisola G, Panizza M (2017) Electrochemical oxidation of a synthetic dye using a BDD anode with a solid polymer electrolyte. Electrochem Commun 75:21–24

    Article  CAS  Google Scholar 

  • Cheng CY, Kelsall GH (2007) Models of hypochlorite production in electrochemical reactors with plate and porous anodes. J Appl Electrochem 37:1203–1217. https://doi.org/10.1007/s10800-007-9364-7

    Article  CAS  Google Scholar 

  • Christofidis D, Assumpção RSFV, Kligerman DC (2019) The historical evolution of urban drainage: from traditional drainage to harmony with nature, Saúde. Debate 43:94–108

    Google Scholar 

  • da Duarte JLS, Meili L, de Gomes LM, Soletti JI, de Zanta CLPES (2019) Electrochemical process and Fenton reaction followed by lamellar settler to oil/surfactant effluent degradation. J. Water Process Eng 31:100841. https://doi.org/10.1016/j.jwpe.2019.100841

    Article  Google Scholar 

  • De Moura Gomes L, Da Silva Duarte JL, Pereira, NM Martínez-Huitle, CA Tonholo, J De Zanta, CLPES 2014 Development of a system for treatment of coconut industry wastewater using electrochemical processes followed by Fenton reaction Water Sci Technol 69 https://doi.org/10.2166/wst.2014.129

  • Duarte JLS, Soares WMG, Gomes LM, Tonholo J, Zanta CLPS (2013) Electrochemical oxidation of safrole using Ti/RuXTi(1 - X)O2 system: preparation, characterization, and role of electrode composition. Electrocatalysis. https://doi.org/10.1007/s12678-013-0153-2

    Article  Google Scholar 

  • Ding J, Bu L, Zhao Q, Kabutey FT, Wei L, Dionysiou DD (2020) Electrochemical activation of persulfate on BDD and DSA anodes: electrolyte influence, kinetics and mechanisms in the degradation of bisphenol A. J Hazard Mater 388:121789. https://doi.org/10.1016/j.jhazmat.2019.121789

    Article  CAS  Google Scholar 

  • Ding J, Zhao QL, Jiang JQ, Wei LL, Wang K, Zhang YS, Hou WZ, Yu H (2017) Electrochemical disinfection and removal of ammonia nitrogen for the reclamation of wastewater treatment plant effluent. Environ Sci Pollut R 24:5152–5158

    Article  CAS  Google Scholar 

  • Duarte JLS, Solano AMS, Arguelho MLPM, Tonholo J, Martínez-Huitle CA, Zanta CLPS (2018) Evaluation of treatment of effluents contaminated with rifampicin by Fenton, electrochemical and associated processes. J Water Process Eng 22:250–257

    Article  Google Scholar 

  • EPA 353.2. Determination of nitrate-nitrite nitrogen by automated colorimetry, United States Environmental Protection Agency, Ohio, 1993.

  • Flox C, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Arias C, Brillas E (2006) Electrochemical combustion of herbicide mecoprop in aqueous medium using a flow reactor with a boron-doped diamond anode. Chemosphere 64:892–902

    Article  CAS  Google Scholar 

  • Gomes, L.M. Silva, J.M. Duarte, J.L.S. Tavares, M.G. Santos, E.L. Machado, S.S. Tonholo, J. Zanta, C.L. P. S. (2019) Ecotoxicological evaluation of a fish farming effluent treated by Fenton oxidation and coagulation process, Sep Sci Technol 1–10. https://doi.org/10.1080/01496395.2019.1662808.

  • Han XG, Lu HB, Gao YX, Chen X, Yang M (2020) The role of in situ Fenton coagulation on the removal of benzoic acid. Chemosphere 238:124632

    Article  CAS  Google Scholar 

  • Kiwi J, Lopez A, Nadtochenko V (2000) Mechanism and kinetics of the OH radicals intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cℓ-). Environ Sci Technol 34:2162–2168

    Article  CAS  Google Scholar 

  • Lin SH, Wu CL (1996) Electrochemical removal of nitrite and ammonia for aquaculture. Water Res 30:715–721

    Article  CAS  Google Scholar 

  • Loures CCA, Alcântara MAK, Izário Filho HJ, Teixeira ACSC, Silva FT, Paiva TCB, Samanamud GRL (2013) Advanced oxidative degradation processes: fundamentals and applications. Int Rev ChemEng 5:102–120

    Google Scholar 

  • Maletzky P, Bauer R (1998) The photo-Fenton method – degradation of nitrogen containing organic compounds. Chemosphere 37:899–909

    Article  CAS  Google Scholar 

  • Melo JMO, Duarte JLS, Ferro AB, Meili L, Zanta CLPS (2020) Comparing electrochemical and Fenton-based processes for aquaculture biocide degradation. Water, Air, Soil Pollut 231:79. https://doi.org/10.1007/s11270-020-4454-9

    Article  CAS  Google Scholar 

  • Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B 87:105–145

    Article  Google Scholar 

  • Martínez-Huitle CA, Rodrigo MA, Sires I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407

    Article  Google Scholar 

  • Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl Catal b: Environ 202:217–261

    Article  CAS  Google Scholar 

  • O’Brien JE (1962) Automatic analysis of chlorides in sewage, Wastes. Engineering 33:670–672

    Google Scholar 

  • Ottley CJ, Davison W, Edmunds WM (1997) Chemical catalysis of nitrate reduction by iron (II). Geochim Cosmochim Acta 61:1819–1828

    Article  CAS  Google Scholar 

  • Rajasekhar B, Venkateshwaran U, Durairaj N, Divyapriya G, Nambi IM, Joseph A (2020) Comprehensive treatment of urban wastewaters using electrochemical advanced oxidation process. J Environ Manage 266:110469–110482. https://doi.org/10.1016/j.jenvman.2020.110469

    Article  CAS  Google Scholar 

  • Romero V, Acevedo S, Marco P, Giménez J, Espluga S (2016) Enhancement of Fenton and photo-Fenton process at initial circumneutral pH for the degradation of the β-blocker metoprolol. Water Res 88:449–457

    Article  CAS  Google Scholar 

  • Rueda-Márquez JJ, Levchuk I, Manzano M, Sillanpää M (2020) Toxicity reduction of industrial and municipal wastewater by advanced oxidation processes (photo-Fenton, UVC/H2O2, electro-Fenton and galvanic Fenton): a review. Catalysts 10:612–639. https://doi.org/10.3390/catal10060612

    Article  CAS  Google Scholar 

  • Sobrero, M.C. Ronco, A. Ensayo de toxicidad aguda con semillas de lechuga (Lactuca sativa L), in: G.C. Morales (Ed.), Ensayos toxicológicos y métodos de evaluación de calidad de aguas: estandarización, intercalibración, resultados y aplicaciones, Instituto Mexicano de Tecnología del Agua, México 2004 55-67

  • Soni BD, Patel UD, Agrawal A, Ruparelia JP (2017) Application of BDD and DSA electrodes for the removal of RB 5 in batch and a continuous operation. J Water Proc Eng 17:11–21

    Article  Google Scholar 

  • Song H, Yan L, Ma J, Jiang J, Cai G, Zhang W, Zhang Z, Zhang J, Yang T (2017) Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: efficiency, mechanism and influencing factors. Water Res 1(116):182–193. https://doi.org/10.1016/j.watres.2017.03.035

    Article  CAS  Google Scholar 

  • Trigueiro LF, Silva LM, Itto LABD, Oliveira TMB, Motheo AJ, Martínez-Huitle CA, Alves JJF, Castro SSL (2017) Inactivation, lysis and degradation by-products of Saccharomyces cerevisiae by electrooxidation using DSA. Environ Sci Pollut Res 24:6096–6105

    Article  CAS  Google Scholar 

  • Vidal ICA, Oliveira R, Coura MA, Nascimento RS, Ogata IS, Costa Filho FC, Camelo SM (2020) Risk assessment to health and human safety in an urban basin in northeastern Brazil. Environ Sci Pollut 27:41902–41913. https://doi.org/10.1007/s11356-020-10038-1

    Article  CAS  Google Scholar 

  • Wang N, Zheng T, Zhang G, Wang P (2016) A review on Fenton-like processes for organic wastewater treatment. J Environ ChemEng 4:762–787

    Article  CAS  Google Scholar 

  • Young BJ, Riera NI, Beily ME, Bres PA, Crespo DC, Ronco AE (2012) Toxicity of the effluent from an anaerobic bioreactor treating cereal residues an Lactuca sativa. Ecotoxicol Environ Saf 76:182–186

    Article  CAS  Google Scholar 

  • Zall DM, Fisher D, Garner MQ (1956) Photometric determination of chlorides in water. Anal Chem 28:1665–1668

    Article  CAS  Google Scholar 

  • Zhang C, He Z, Wu J, Fu D (2015) The peculiar roles of sulfate electrolytes in BDD anode cells. J Electrochem Soc 162:E85–E89

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support of this work from the Coordination for the Improvement of Higher Education (CAPES), the National Council for Scientific and Technological Development, and the Foundation for Research Support of the State of Alagoas (FAPEAL). José Leandro da S. Duarte received grant from CAPES/Brazil (88882.316136/2019–01).

Author information

Authors and Affiliations

Authors

Contributions

Jenivaldo L. de Araújo: validation, formal analysis, investigation, data curation, writing—original draft.

Jaceguai S. da Silva: validation, formal analysis.

Fábio A. S. Santos: validation, data curation.

Cenira M. de Carvalho: validation, data curation.

José Leandro S. Duarte: data curation, writing—review and editing, visualization.

Josealdo Tonholo: conceptualization, methodology, resources, writing—review and editing, visualization, supervision.

Carmem L. P. S. Zanta: conceptualization, methodology, resources, writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to José Leandro S. Duarte.

Ethics declarations

Ethical approval

This research does not need ethical approval.

Consent to participate

It is not applied.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ricardo A. Torres-Palma

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araújo, J.L., da Silva, J.S., Santos, F.A.S. et al. Decontamination of real urban sewage—comparison between Fenton and electrochemical oxidation. Environ Sci Pollut Res 29, 35061–35072 (2022). https://doi.org/10.1007/s11356-022-18718-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18718-w

Keywords

Navigation