Skip to main content
Log in

β-cyclodextrin and its derivatives: application in wastewater treatment

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Water is one of the basic necessities of life and having clean water is extremely important for human health. In recent years, β-cyclodextrin (β-CD)–based polymers and nanosystems have been extensively studied as adsorbents for the purpose of water purification. They present high efficiency and capability to remove inorganic, organic, and heavy metal impurities from wastewater as compared to conventional methods of water purification. β-CDs are cyclic polysaccharides having specific dimension of hydrophobic cavities and hydrophilic functional groups. The hydrophobic cavities form inclusion complexes through host–guest interactions. The hydroxyl groups form sites of hydrogen bonding and electrostatic interaction with pollutants. Additionally, they are also the sites of modification to bring about different derivatisation and polymerization reactions in order to impart desirable properties for efficient adsorption material. This article comprises of various derivatives of β-cyclodextrins: their nanoparticulate systems and their characterization and applications to remove different types of impurities from wastewater. The chemical reactions for their synthesis and mechanism of adsorption are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ansari R et al (2013) Nanosponge: a novel carrier for drug delivery. Drug Deliv Lett 3(3):185–190

    Article  CAS  Google Scholar 

  • Badr-Eldin SM et al (2008) Inclusion complexes of tadalafil with natural and chemically modified β-cyclodextrins. I: preparation and in-vitro evaluation. Eur J Pharma Biopharm 70(3):819–827

    Article  CAS  Google Scholar 

  • Badruddoza A et al (2011) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J Hazard Mater 185(2–3):1177–1186

    Article  CAS  Google Scholar 

  • Binello A et al (2004) Synthesis of chitosan–cyclodextrin adducts and evaluation of their bitter-masking properties. Flavour Fragr J 19(5):394–400

    Article  CAS  Google Scholar 

  • Bora T, Dutta J (2014) Applications of nanotechnology in wastewater treatment—a review. J Nanosci Nanotechnol 14(1):613–626

    Article  CAS  Google Scholar 

  • Caldera F et al (2017) Evolution of cyclodextrin nanosponges. Int J Pharm 531(2):470–479

    Article  CAS  Google Scholar 

  • Chaudhary V, Patel J (2013) Cyclodextrin inclusion complex to enhance solubility of poorly water soluble drugs: a review. Int J Pharm Sci Res 4(1):68

    CAS  Google Scholar 

  • Chen Y et al (2010) Selective removal of Cu (II) ions by using cation-exchange resin-supported polyethyleneimine (PEI) nanoclusters. Environ Sci Technol 44(9):3508–3513

    Article  CAS  Google Scholar 

  • Crini G et al (1999) Sorption properties toward substituted phenolic derivatives in water using macroporous polyamines containing β-cyclodextrin. J Appl Polym Sci 73(14):2903–2910

    Article  CAS  Google Scholar 

  • Cui S et al (2016) Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crops Prod 83:346–352

    Article  CAS  Google Scholar 

  • Dalmolin MC et al (2019) Modified β-cyclodextrin/amlodipine inclusion complexes: preparation and application in aqueous systems. J Mol Liq 276:531–540

    Article  CAS  Google Scholar 

  • Doan VD et al (2021) High-efficient reduction of methylene blue and 4-nitrophenol by silver nanoparticles embedded in magnetic graphene oxide. Environ Sci Pollut Res https://doi.org/10.1007/s11356-021-13597-z

  • Duan Z et al (2020) Towards cleaner wastewater treatment for special removal of cationic organic dye pollutants: a case study on application of supramolecular inclusion technology with β-cyclodextrin derivatives. Journal of Cleaner Production 256:120308

    Article  CAS  Google Scholar 

  • Dungeni M et al (2010) Abundance of pathogenic bacteria and viral indicators in chlorinated effluents produced by four wastewater treatment plants in the Gauteng Province, South Africa. Water SA 36(5):607–614

  • El-Kafrawy AF et al (2017) Adsorbents based on natural polymers for removal of some heavy metals from aqueous solution. Egypt J Pet 26(1):23–32

    Article  Google Scholar 

  • Fan L et al (2012) Synthesis and characterization of magnetic β-cyclodextrin–chitosan nanoparticles as nano-adsorbents for removal of methyl blue. Int J Biol Macromol 50(2):444–450

    Article  CAS  Google Scholar 

  • Gidwani B, Vyas A (2015) A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Research International 98268:1–15

  • Gomez-Maldonado D et al (2019) Cellulose-cyclodextrin co-polymer for the removal of cyanotoxins on water sources. Polymers 11(12):2075

    Article  CAS  Google Scholar 

  • Gupta VK et al (2012) Chemical treatment technologies for waste-water recycling—an overview. RSC Adv 2(16):6380–6388

    Article  CAS  Google Scholar 

  • Han J et al (2015) β-Cyclodextrin functionalized polystyrene porous monoliths for separating phenol from wastewater. Carbohyd Polym 120:85–91

    Article  CAS  Google Scholar 

  • Hemine K et al (2020) Cyclodextrin polymers as efficient adsorbents for removing toxic non-biodegradable pimavanserin from pharmaceutical wastewaters. Chemosphere 250:126250

    Article  CAS  Google Scholar 

  • Hou N et al (2019) Facile preparation of self-assembled hydrogels constructed from poly-cyclodextrin and poly-adamantane as highly selective adsorbents for wastewater treatment. Soft Matter 15(30):6097–6106

    Article  CAS  Google Scholar 

  • Hu X et al (2020) Multifunctional β-cyclodextrin polymer for simultaneous removal of natural organic matter and organic micropollutants and detrimental microorganisms from water. ACS Appl Mater Interfaces 12(10):12165–12175

    Article  CAS  Google Scholar 

  • Huang CY (1982) [27] Determination of binding stoichiometry by the continuous variation method: the job plot. Methods in Enzymology, Elsevier 87:509–525

    Article  CAS  Google Scholar 

  • Hutson DH, Roberts TR (1990) Environmental fate of pesticides: Progress in pesticide biochemistry and toxicology. John Wiley & Sons 7(286)

  • Ibrahim RK et al (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res 23:13754–13788

  • Jia S et al (2019) β-Cyclodextrin modified electrospinning fibers with good regeneration for efficient temperature-enhanced adsorption of crystal violet. Carbohyd Polym 208:486–494

    Article  CAS  Google Scholar 

  • Jurecska L et al (2014) Characterization of cyclodextrin containing nanofilters for removal of pharmaceutical residues. J Pharm Biomed Anal 98:90–93

    Article  CAS  Google Scholar 

  • Khalifa ME et al (2020) Effect of media variation on the removal efficiency of pollutants from domestic wastewater in constructed wetland systems. Ecological Engineering 143:105668

    Article  Google Scholar 

  • Kong L et al (2015) β-Cyclodextrin stabilized magnetic Fe 3 S 4 nanoparticles for efficient removal of Pb (II). Journal of Materials Chemistry A 3(30):15755–15763

    Article  CAS  Google Scholar 

  • Krstić V et al (2018) A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem Eng Sci 192:273–287

  • Lee VannajanSanghiran et al (2021) Pesticide remediation with cyclodextrins: a review. Environmental Science and Pollution Research 28:47785–47799

    Article  Google Scholar 

  • Leudjo-Taka A et al (2020) Metal nanoparticles decorated phosphorylated carbon nanotube/cyclodextrin nanosponge for trichloroethylene and Congo red dye adsorption from wastewater. J Environ Sci Chem Eng 8(3):103602

  • Li D, Ma M (1998) Cyclodextrin polymer separation materials. WO1998022197A1 (Applicant: The Regents of the University of California)

  • Li X et al (2019) Adsorption behaviour of Eriochrome Black T from water onto a cross-linked β-cyclodextrin polymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects 578:123582

    Article  CAS  Google Scholar 

  • Liu Q et al (2019) Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: a critical review. Chemosphere 241:125043

  • Loftsson T et al (2005) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302(1–2):18–28

    Article  CAS  Google Scholar 

  • Loftsson T et al (1993) Cyclodextrin complexation of NSAIDs: physicochemical characteristics. Eur J Pharm Sci 1(2):95–101

    Article  CAS  Google Scholar 

  • Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog Polym Sci 38(2):344–368

    Article  CAS  Google Scholar 

  • Omar SM et al (2020) Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharmaceutical Journal 28(3):349–361

  • Osmani RA et al (2018) Cyclodextrin nanosponge-based systems in drug delivery and nanotherapeutics: current progress and future prospects. Elsevier, Organic Materials as Smart Nanocarriers for Drug Delivery, pp 659–717

    Google Scholar 

  • Pace SA et al (2018) Impact of organic waste composition on life cycle energy production, global warming and water use for treatment by anaerobic digestion followed by composting. Resour Conserv Recycl 137:126–135

    Article  Google Scholar 

  • Peng H (2020) The effective removal of phenol from aqueous solution via adsorption on CS/β-CD/CTA multicomponent adsorbent and its application for COD degradation of drilling wastewater. Environ Sci Pollut Res 27(27):33668–33680

  • Phan TN et al (2002) The removal of organic pollutants from water using new silica-supported β-cyclodextrin derivatives. React Funct Polym 52(3):117–125

    Article  CAS  Google Scholar 

  • Ruiz-Martinez A et al (2012) Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Biores Technol 126:247–253

    Article  CAS  Google Scholar 

  • Sheng G et al (2010) Adsorption of copper (II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. J Hazard Mater 178(1–3):333–340

    Article  CAS  Google Scholar 

  • Sherje AP et al (2017) Cyclodextrin-based nanosponges: a critical review. Carbohyd Polym 173:37–49

    Article  CAS  Google Scholar 

  • Taka AL et al (2020) Metal nanoparticles decorated phosphorylated carbon nanotube/cyclodextrin nanosponge for trichloroethylene and Congo red dye adsorption from wastewater. Journal of Environmental Chemical Engineering 8(3):103602

    Article  Google Scholar 

  • Taka AL et al (2017) Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: a review. Carbohyd Polym 159:94–107

    Article  Google Scholar 

  • Taka Anny Leudjo, E. F.-K et al (2018) Removal of cobalt and lead ions from wastewater samples using an insoluble nanosponge biopolymer composite: adsorption isotherm, kinetic, thermodynamic, and regeneration studies. Environmental Science and Pollution Research 25:21752–21767

    Article  CAS  Google Scholar 

  • Trotta F (2011) Cyclodextrins in pharmaceutics, cosmetics, and biomedicine: current and future industrial applications. In: Cyclodextrin Nanosponges and their applications. John Wiley & Sons, Inc., Hoboken, p 323–342

  • Trotta F, Tumiatti W (2005) Cross-linked polymers based on cyclodextrins for removing polluting agents. WO2003085002A1 (Applicant: SEA marconi technologies)

  • Trotta F et al (2012) Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 8(1):2091–2099

    Article  CAS  Google Scholar 

  • Usman M et al (2021) Environmentally friendly fabrication of new β-cyclodextrin/ZrO2 nanocomposite for simultaneous removal of Pb (II) and BPA from water. Science of The Total Environment 784:147207

    Article  CAS  Google Scholar 

  • Wang Z et al (2017) A crosslinked β-cyclodextrin polymer used for rapid removal of a broad-spectrum of organic micropollutants from water. Carbohyd Polym 177:224–231

    Article  CAS  Google Scholar 

  • Yan X et al (2018) Preparation and characterization of CS/β-CD/Nano-ZnO composite porous membrane optimized by Box-Behnken for the adsorption of Congo red. Environ Sci Pollut Res 25:22244–22258

  • Yuan Z et al (2020) Cyclodextrin hydrogels: rapid removal of aromatic micropollutants and adsorption mechanisms. J Chem Eng Data 65(2):678–689

    Article  CAS  Google Scholar 

  • Yuan Z et al (2019) Preparation of a poly (acrylic acid) based hydrogel with fast adsorption rate and high adsorption capacity for the removal of cationic dyes. RSC Adv 9(37):21075–21085

    Article  CAS  Google Scholar 

  • Zhang J et al (2017) Determination of quinolones in wastewater by porous β-cyclodextrin polymer based solid-phase extraction coupled with HPLC. J Chromatogr B 1068:24–32

    Article  Google Scholar 

  • Zhang M et al (2020) Synthesis and characterization of water-soluble β-cyclodextrin polymers via thiol-maleimide ‘click’chemistry. Eur Polymer J 128:109603

  • Zhou Y et al (2019) Adsorptive removal of bisphenol A, chloroxylenol, and carbamazepine from water using a novel β-cyclodextrin polymer. Ecotoxicol Environ Saf 170:278–285

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge Dr. Prashant Kharkar, Professor, Institute of Chemical Technology for valuable guidance in initiating the project work.

Author information

Authors and Affiliations

Authors

Contributions

Diksha Chodankar has written the manuscript. Dr. Ashish Kanhed and Dr. Amisha Vora have guided through writing.

Corresponding author

Correspondence to Ashish Kanhed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chodankar, D., Vora, A. & Kanhed, A. β-cyclodextrin and its derivatives: application in wastewater treatment. Environ Sci Pollut Res 29, 1585–1604 (2022). https://doi.org/10.1007/s11356-021-17014-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17014-3

Keywords

Navigation