Skip to main content

Advertisement

Log in

Experimental study of solar energy–based water purifier of single-slope type by incorporating a number of similar evacuated tubular collectors

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This research paper deals with the experimental investigation of solar energy–based water purifier (SEBWP) of single-slope type by incorporating N similar evacuated tubular collectors (ETCs) having series connection. Experimental investigation has been done for a year from August 2018 to July 2019. MATLAB has been used for evaluating performance parameters of the system followed by the validation of these results with their experimental values. A fair agreement has been found between theoretical and experimental values. Values of correlation coefficients for condensing glass temperature, water temperature, and water yield have been found to be 0.9932, 0.9928, and 0.9951 respectively. Further, energy metrics, productivity, cost of producing 1 kg of fresh water, and exergoeconomic and enviroeconomic parameters have been evaluated. Values of energy payback time, per kilogram cost of producing fresh water and exergy loss per unit Rs. have been evaluated to be 1.72 years, Rs. 0.95/kg, and 0.128 kWh/Rs. respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data are given in the manuscript.

Abbreviations

SEBWP:

solar energy–based water purifier

ETCs:

evacuated tubular collectors

N :

number of evacuated tubular collectors

GI:

galvanized iron

I(t):

solar intensity falling on the surface of collector, W/m2

I s(t):

solar intensity falling on the surface of SEBWP, W/m2

R :

outer radius of glass tube, m

F’:

collector efficiency factor, fraction

h pf :

heat transfer coefficient from plate to fluid, W/m2·K

T p :

temperature of absorber plate, °C

T f :

temperature of fluid/water, °C

T a :

atmospheric temperature, °C

U tpa :

overall heat transfer coefficient from plate to environment, W/m2·K

\( {\dot{m}}_{\mathrm{f}} \) :

mass flow rate, kg/s

C f :

specific heat capacity of fluid/water, kJ/kg·K

r :

radius of copper tube, m

T fo1 :

temperature of fluid at the outlet of first collector, °C

T fi :

temperature of fluid at the inlet of first collector, °C

T foN :

temperature of fluid at the outlet of Nth collector, °C

\( {\dot{Q}}_{\mathrm{uN}} \) :

rate of useful heat gain, kWh

A g :

area of glass cover, m2

h 1w :

total heat transfer coefficient from water surface to glass cover, W/m2·K

T w :

temperature of water, °C

T gi :

temperature at inside surface of glass, °C

T go :

temperature at outside surface of glass, °C

A b :

area of basin liner, m2

K g :

thermal conductivity of glass, W/m·K

L g :

thickness of glass cover, m

h 1g :

total heat transfer coefficient from glass surface to ambient, W/m2·K

h bw :

heat transfer coefficient from basin liner to water, W/m2·K

T b :

temperature of basin liner, °C

M w :

mass of water in basin, kg

h ba :

heat transfer coefficient between basin liner and ambient, W/m2·K

\( {\dot{m}}_{\mathrm{ew}} \) :

hourly water yield, kg/h

r 1 :

coefficient of correlation, fraction

e :

root mean square percent deviation, %

r 1 2 :

coefficient of determination, fraction

U I :

standard uncertainty

σ :

standard deviation

UEOYAC:

uniform end of year annual cost, Rs.

COPW :

cost of potable water, Rs./kg

PC :

present cost, Rs.

CRF:

capital recovery factor, fraction

MC :

maintenance cost, Rs.

SFF :

sinking fund factor, fraction

i :

interest rate, %

n :

life of system, year

SV:

salvage value, Rs.

P u :

cost of pump, Rs.

T EPB :

energy payback time, Year

F EP :

energy production factor, per year

η LCC :

life cycle conversion efficiency, fraction

E in :

embodied energy, kWh

h cwc :

convective heat transfer coefficients from water surface to inside surface of condensing cover, W/m2·K

h rwc :

radiative heat transfer coefficients from water surface to inside surface of condensing cover, W/m2·K

T wf :

final temperature of water, °C

T wf :

initial temperature of water, °C

CRP:

carbon dioxide reduction price, $

R i1 :

inner radius of inner cylindrical glass tube, m

R i2 :

outer radius of inner cylindrical glass tube, m

R o1 :

inner radius of outer cylindrical glass tube, m

Ro2 :

outer radius of outer cylindrical glass tube, m

α :

absorptivity

τ :

transmissivity

\( \overset{\acute{\mkern6mu}}{\alpha_g} \) :

effective absorptivity of glass

\( \overset{\acute{\mkern6mu}}{\alpha_w} \) :

effective absorptivity of water

\( \overset{\acute{\mkern6mu}}{\alpha_b} \) :

effective absorptivity of basin liner

References

  • Abdullah AS, Essa FA, Omara ZM, Rashid Y, Hadj-Taieb L, Abdelaziz GB, Kabeel AE (2019) Rotating-drum solar still with enhanced evaporation and condensation techniques: comprehensive study. Energy Convers Manag 199:112024

    Article  Google Scholar 

  • Abdullah AS, Essa FA, Bacha HB, Omara ZM (2020a) Improving the trays solar still performance using reflectors and phase change material with nanoparticles. J Energy Storage 31:101744

  • Abdullah AS, Younes MM, Omara ZM, Essa FA (2020b) New design of trays solar still with enhanced evaporation methods - comprehensive study. Sol Energy 203C:164–174

  • Arslan M (2012) Experimental investigation of still performance for different active solar still designs under closed cycle mode. Desalination 307:9–19

    Article  CAS  Google Scholar 

  • Ashcroft H (1950) The productivity of several machines under the care of one operator. J. Roy. Stat. Soc. (Lond.). Ser B XII 145–151

  • Attia MEH, Kabeel AE, Bellila A (2021) A comparative energy and exergy efficiency study of hemispherical and single-slope solar stills. Environ Sci Pollut Res 28:35649–35659

    Article  CAS  Google Scholar 

  • Attia MEH, Driss Z, Kabeel AE, Alagar K, Athikesavan MM, Sathyamurthy R (2021a) Phosphate bags as energy storage materials for enhancement of solar still performance. Environ Sci Pollut Res 28:21540–21552

    Article  CAS  Google Scholar 

  • Bait O (2019) Exergy, environ–economic and economic analyses of a tubular solar water heater assisted solar still. J Clean Prod 212:630–646

    Article  Google Scholar 

  • Bell, Stephanie (1999) A beginner’s guide to uncertainty of measurement, N0. 11, Issue 2, ISSN 1368-6550, Centre for Basic, Thermal and Length Metrology, National Physical Laboratory, Teddington, Middlesex, United Kingdom, p. TW11 0LW.

  • Benson F (1952) Further notes on the productivity of machines requiring attention at random intervals. J Roy Stat Soc Ser B XIV 200–210

  • Chandrika VS, Attia MEH, Manokar AM, Marquez FPG, Driss Z, Sathyamurthy R (2021) Performance enhancements of conventional solar still using reflective aluminium foil sheet and reflective glass mirrors: energy and exergy analysis. Environ Sci Pollut Res 28:32508–32516

    Article  Google Scholar 

  • Chapra SC, Canale RP (1989) Numerical methods for engineers. McGraw Hill

    Google Scholar 

  • Cox DR (1951) The productivity of machines requiring attention at random intervals. J Roy Stat Soc Ser B XIII 65–82

  • Dev R, Tiwari GN (2010) Characteristic equation of a hybrid (PV-T) active solar still. Desalination 254:126–137

    Article  CAS  Google Scholar 

  • Dimri V, Sarkar B, Singh U, Tiwari GN (2008) Effect of condensing cover material on yield of an active solar still: an experimental validation. Desalination 227:178–189

    Article  CAS  Google Scholar 

  • Elbar ARA, Yousef MS, Hassan H (2019) Energy, exergy, exergoeconomic and enviroeconomic (4E) evaluation of a new integration of solar still with photovoltaic panel. J Clean Prod 233:665–680

    Article  Google Scholar 

  • El-Sebaii AA, Aboul-Enein S, Ramadan MRI, Khallaf AM (2011) Thermal performance of an active single basin solar still (ASBS) coupled to shallow solar pond (SSP). Desalination 280:183–190

    Article  CAS  Google Scholar 

  • Elsheikh AH, Sharshir SW, Elaziz MA, Kabeel AE, Guilan W, Haiou Z (2019) Modeling of solar energy systems using artificial neural network: a comprehensive review. Sol Energy 180:622–639

    Article  Google Scholar 

  • Esfahani JA, Rahbar N, Lavvaf M (2011) Utilization of thermoelectric cooling in a portable active solar still — an experimental study on winter days. Desalination 269:198–205

    Article  CAS  Google Scholar 

  • Essa FA, Elaziz MA, Elsheikh AH (2020a) An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer. Appl Therm Eng 170(2020):115020

    Article  Google Scholar 

  • Essa FA, Elaziz MA, Elsheikh AH (2020b) Prediction of power consumption and water productivity of seawater greenhouse system using random vector functional link network integrated with artificial ecosystem-based optimization. Process Saf Environ Prot 144:322–329

    Article  CAS  Google Scholar 

  • Essa FA, Abdullah AS, Omara ZM (2020c) Rotating discs solar still: new mechanism of desalination. J Clean Prod 275:123200

    Article  Google Scholar 

  • Essa FA, Elsheikh AH, Algazzar AA, Sathyamurthy R, Ali MKA, Elaziz MA, Salman K (2020d) Eco-friendly coffee-based colloid for performance augmentation of solar stills. Process Saf Environ Prot 136:259–267

    Article  CAS  Google Scholar 

  • Feilizadeh M, Estahbanati MRK, Khorram M, Rahimpour MR (2019) Experimental investigation of an active thermosyphon solar still with enhanced condenser. Renew Energy 143:328–334

    Article  Google Scholar 

  • Feilizadeh M, Estahbanati MRK, Jafarpur K, Roostaaza R, Feilizadeh M, Taghvaei H (2015) Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors. Appl Energy 152:39–46

    Article  Google Scholar 

  • Tiwari GN (2002) Solar energy: fundamentals, design, modelling and applications, CRC Publication/Narosa Publishing House, New Delhi/New York

  • Gupta VS, Singh DB, Mishra RK, Sharma SK, Tiwari GN (2018) Development of characteristic equations for PVT-CPC active solar distillation system. Desalination 445:266–279

    Article  CAS  Google Scholar 

  • Hamadou OA, Abdellatif K (2014) Modeling an active solar still for sea water desalination process optimization. Desalination 354:1–8

    Article  CAS  Google Scholar 

  • Hassan H (2020) Comparing the performance of passive and active double and single slope solar stills incorporated with parabolic trough collector via energy, exergy and productivity. Renew Energy 148:437–450

    Article  Google Scholar 

  • International Labor Office (1979), Introduction to work study. International Labor Organization, Geneva, ISBN 81-204-0602-8.

  • Issa RJ, Chang B (2017) Performance study on evacuated tubular collector coupled solar still in west texas climate. Int J Green Energy 14(10):793–800

    Article  CAS  Google Scholar 

  • Fernandez J, Chargoy N (1990) Multistage indirectly heated solar still. Sol Energy 44(4):215–223

    Article  CAS  Google Scholar 

  • Joshi P, Tiwari GN (2018) Energy matrices, exergo-economic and enviro-economic analysis of an active single slope solar still integrated with a heat exchanger: a comparative study. Desalination 443:85–98

    Article  CAS  Google Scholar 

  • Kumar BP, Winston DP, Pounraj P, Manokar AM, Sathyamurthy R, Kabeel AE (2018) Experimental investigation on hybrid PV/T active solar still with effective heating and cover cooling method. Desalination 435:140–151

    Article  Google Scholar 

  • Kumar R, Singh D.B., Kumar N., Nirala A., Tiwari G.N., Effect of number of collectors (N) on the environment due to single slope solar desalination unit coupled with N identical evacuated tubular collectors, Materials Today: Proceedings, 28 (4) (2020) 2161-2165.

  • Kumar S, Tiwari GN (2009) Life cycle cost analysis of single slope hybrid (PV/T) active solar still. Appl Energy 86(10):1995–2004

    Article  CAS  Google Scholar 

  • Kumar S, Dubey A, Tiwari GN (2014) A solar still augmented with an evacuated tube collector in forced mode. Desalination 347:15–24

    Article  CAS  Google Scholar 

  • Mohaisen HS, Esfahani JA, Ayani MB (2021) Effect of condensing cavity on the performance of a passive solar desalination system: an experimental study. Environ Sci Pollut Res 28:5080–5091

    Article  CAS  Google Scholar 

  • Nakara BC, Chaudhary KK (2004) Instrumentation, measurement and analysis. Tata McGraw-Hill

    Google Scholar 

  • Omara ZM, Kabeel AE, Abdullah AS, Essa FA (2016) Experimental investigation of corrugated absorber solar still with wick and reflectors. Desalination 381:111–116

    Article  CAS  Google Scholar 

  • Omara ZM, Kabeel AE, Essa FA (2015) Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still. Energy Convers Manag 103:965–972

    Article  Google Scholar 

  • Panchal H, Mevada D, Sadasivuni KK, Essa FA, Shanmugan S (2020) Khalid M, Experimental and water quality analysis of solar stills with vertical and inclined fins. Groundw Sustain Dev 11:100410

    Article  Google Scholar 

  • Parsa SM, Davoud JY, Rahbar A, Majidniya M, Salimi M, Amidpour Y, Amidpour M (2020) Experimental investigation at a summit above 13,000 ft on active solar still water purification powered by photovoltaic: a comparative study. Desalination 476:114146

    Article  CAS  Google Scholar 

  • Rai SN, Tiwari GN (1983) Single basin solar still coupled with flat plate collector. Energy Convers Manag 23(3):145–149

    Article  Google Scholar 

  • Toyama S, Kagakuv K (1972) Gijitsu, 24 Maruzen, Tokyo, p. 159

  • Sahota LS, Tiwari GN (2017) Analytical characteristic equation of nanofluid loaded active double slope solar still coupled with helically coiled heat exchanger. Energy Convers Manag 135:308–326

    Article  CAS  Google Scholar 

  • Sampathkumar K, Arjunan TV, Senthilkumar P (2013) The experimental investigation of a solar still coupled with an evacuated tube collector. Energy Sources Part A 35(3):261–270

    Article  CAS  Google Scholar 

  • Sandeep, Kumar S, Dwivedi VK (2015) Experimental study on modified single slope single basin active solar still. Desalination 367:69–75

    Article  CAS  Google Scholar 

  • Shanmugan S, Essa FA, Gorjianc S, Kabeel AE, Sathyamurthy R, Manokar AM (2020) Experimental study on single slope single basin solar still using TiO2 Nano layer for natural clean water invention. J Energy Storage 30:101522

    Article  Google Scholar 

  • Sharshir SW, Kandeal AW, Ismail M, Abdelaziz GB, Kabeel AE, Yang N (2019) Augmentation of a pyramid solar still performance using evacuated tubes and nanofluid: experimental approach. Appl Therm Eng 160:113997

    Article  CAS  Google Scholar 

  • Shehata AI, Kabeel AE, Dawood MMK, Elharidi AM, Abd Elsalam A, Ramzy K, Mehanna A (2020) Enhancement of the productivity for single solar still with ultrasonic humidifier combined with evacuated solar collector: an experimental study. Energy Conversion and Management 208:112592

    Article  Google Scholar 

  • Shoeibi S, Rahbar N, Esfahlani AA, Kargarsharifabad H (2020) Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: an experimental study and exergy analysis. Appl Energy 263:114581

    Article  Google Scholar 

  • Singh DB, Dwivedi VK, Tiwari GN, Kumar N (2017) Analytical characteristic equation of N identical evacuated tubular collectors integrated single slope solar still. Desalin Water Treat 88:41–51

    Article  CAS  Google Scholar 

  • Singh DB, Yadav JK, Dwivedi VK, Kumar S, Tiwari GN, Al-Helal IM (2016) Experimental studies of active solar still integrated with two hybrid PVT collectors. Sol Energy 130:207–223

    Article  Google Scholar 

  • Singh DB, Raturi A, Kumar N, Nirala A, Singh AK, Tiwari S (2020) Effect of flow of fluid mass per unit time on life cycle conversion efficiency of single slope solar desalination unit coupled with N identical evacuated tubular collectors. Mater Today: Proc 28(4):2096–2100

    CAS  Google Scholar 

  • Singh DB, Tiwari GN (2017) Energy, exergy and cost analyses of N identical evacuated tubular collectors integrated basin type solar stills: a comparative study. Sol Energy 155:829–846

    Article  Google Scholar 

  • Singh DB (2019) Exergo-economic, enviro-economic and productivity analyses of N identical evacuated tubular collectors integrated double slope solar still. Appl Therm Eng 148:96–104

    Article  Google Scholar 

  • Singh DB (2018) Energy metrics analysis of N identical evacuated tubular collectors integrated single slope solar still. Energy 148:546–560

    Article  Google Scholar 

  • Singh DB, Al-Helal IM (2018) Energy metrics analysis of N identical evacuated tubular collectors integrated double slope solar still. Desalination 432:10–22

    Article  CAS  Google Scholar 

  • Singh G, Kumar S, Tiwari GN (2011) Design, fabrication and performance evaluation of a hybrid photovoltaic thermal (PVT) double slope active solar still. Desalination 277:399–406

    Article  CAS  Google Scholar 

  • Singh RV, Kumar S, Hasan MM, Khan ME, Tiwari GN (2013) Performance of a solar still integrated with evacuated tube collector in natural mode. Desalination 318:25–33

    Article  CAS  Google Scholar 

  • Taghvaei H, Taghvaei H, Jafarpur K, Feilizadeh M, Estahbanatia MRK (2015) Experimental investigation of the effect of solar collecting area on the performance of active solar stills with different brine depths. Desalination 358:76–83

    Article  CAS  Google Scholar 

  • Thalib MM, Manokar AM, Essa FA, Vasimalai N, Sathyamurthy R, Marquez FPG (2020) Comparative study of tubular solar stills with phase change material and nano-enhanced phase change material. Energies 13(2020):3989

    Article  CAS  Google Scholar 

  • Tiwari GN, Mishra AK, Meraj M, Ahmad A, Khan ME (2020) Effect of shape of condensing cover on energy and exergy analysis of a PVTCPC active solar distillation system. Sol Energy 205:113–125

    Article  Google Scholar 

  • Tripathi R, Tiwari GN (2006) Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction. Sol Energy 80:956–967

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sanjeev Kumar Sharma: writing—review and editing

Ashis Mallick: writing, formal analysis

Desh Bandhu Singh: data curation, project administration, software, review and editing

Gopal Nath Tiwari: review and editing

Corresponding author

Correspondence to Desh Bandhu Singh.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

i. Experimentation of SEBWP of single-slope type consisting N alike ETCs has been done.

ii. Energy payback time and ηLCC have been estimated as 1.72 year and 0.23 respectively.

iii. COPW and enviroeconomic parameter come out to be 0.95 and $960.31 respectively.

iv. Value of productivity is more than 100% which indicates the system to be feasible.

Appendix

Appendix

$$ {\left(A{F}_R\left(\alpha \tau \right)\right)}_1={PF}_1\alpha {\tau}^2{A}_R{F}_R;\kern0.5em {\left(A\ {F}_R{U}_L\right)}_1=\left(1-{K}_k\right){\dot{\mathrm{m}}}_{\mathrm{f}}{\mathrm{c}}_{\mathrm{f}}; $$
$$ {PF}_1=\frac{h_{pf}}{F^{\prime }{h}_{pf}+{U}_{tpa}};\kern0.5em {U}_L=\frac{U_{t, pa}.{h}_{pf}}{F^{\prime }{h}_{pf}+{U}_{t, pa}}; $$
$$ {F}_R=\frac{{\dot{m}}_f{C}_f}{U_L{A}_R}\left[1-\exp \left(-\frac{2\uppi {\mathrm{r}}^{\prime }{\mathrm{L}}^{\prime }{\mathrm{U}}_{\mathrm{L}}}{{\dot{\mathrm{m}}}_{\mathrm{f}}{\mathrm{c}}_{\mathrm{f}}}\right)\right]\kern0.5em ; $$
$$ {K}_K=\left(1-\frac{A_R{F}_R{U}_L}{{\dot{m}}_f{c}_f}\right) $$
$$ {h}_{pf}=100\ W{m}^2{K}^{-1}s $$
$$ {U}_{t, pa}={\left[\frac{Ro_2}{R_{o1}{h}_i}+\frac{R_{o2}\ln \left(\frac{Ri_2}{Ri_1}\right)}{K_g}+\frac{1}{C_{ev}}+\frac{R_{o2}\ln \left(\frac{Ro_2}{Ro_1}\right)}{K_g}+\frac{1}{h_o}\right]}^{-1} $$
$$ {a}_1=\frac{1}{M_w{C}_w}\left[{\dot{m}}_f{C}_f\left(1-{K}_k^N\right)+{U}_s{A}_b\right]\kern0.5em ; $$
$$ \overline{f_1}(t)=\frac{1}{M_w{C}_w}\left[\overset{\acute{\mkern6mu}}{\alpha_{eff}}{A}_b\overline{I_s}(t)+\frac{\left(1-{K_k}^N\right)}{\left(1-{K}_k\right)}{\left(A{F}_R\left(\alpha \tau \right)\right)}_1\overline{I_c}(t)+\left(\frac{\left(1-{K_k}^N\right)}{\left(1-{K}_k\right)}{\left(A{F}_R{U}_L\right)}_1+{U}_s{A}_b\right){\overline{T}}_a\right]\kern0.5em ; $$
$$ {\alpha}_{eff}^{\prime }={\alpha}_w^{\prime }+{h}_1{\alpha}_b^{\prime }+{h}_1^{\prime }{\alpha}_g^{\prime}\kern0.5em ;{h}_1=\frac{h_{bw}}{h_{bw}+{h}_{ba}}\kern0.5em ; $$
$$ {h}_1^{\prime }=\frac{h_{1w}{A}_g}{U_{c, ga}{A}_g+{h}_{1w}{A}_b}\kern0.5em ;{h}_{1w}={h}_{rwg}+{h}_{cwg}+{h}_{ewg}\kern0.5em ; $$
$$ {h}_{ewg}=16.273\times {10}^{-3}{h}_{cwg}\left[\frac{P_w-{P}_{gi}}{T_w-{T}_{gi}}\right]\kern0.5em ; $$
$$ {h}_{cwg}=0.884\ {\left[\left({T}_w-{T}_{gi}\right)+\frac{\left({P}_w-{P}_{gi}\right)\left({T}_w+273\right)}{268.9\times {10}^3-{P}_w}\right]}^{\frac{1}{3}}; $$
$$ {P}_w=\mathit{\exp}\left[25.317-\frac{5144}{T_w+273}\right]\kern0.5em ;{P}_{gi}=\mathit{\exp}\left[25.317-\frac{5144}{T_{gi}+273}\right]\kern0.5em ; $$
$$ {h}_{rwg}=\left(0.82\times 5.67\times {10}^{-8}\right)\left[{\left({T}_w+273\right)}^2+{\left({T}_{gi}+273\right)}^2\right]\left[{T}_w+{T}_{gi}+546\right]\kern0.5em ; $$
$$ {U}_s={U}_t+{U}_b\kern0.5em ;{U}_b=\frac{h_{ba}{h}_{bw}}{h_{bw}+{h}_{ba}}\kern0.5em ;{U}_t=\frac{h_{1w}{U}_{c, ga}{A}_g}{U_{c, ga}{A}_g+{h}_{1w}{A}_b}\kern0.5em ; $$
$$ {U}_{c, ga}=\frac{\frac{K_g}{l_g}{h}_{1g}}{\frac{K_g}{l_g}+{h}_{1g}}\kern0.5em ;{h}_{ba}={\left[\frac{L_i}{K_i}+\frac{1}{h_{cb}+{h}_{rb}}\right]}^{-1}\kern0.5em ; $$

hcb + hrb = 5.7 Wm−2K−1 , hbw = 250 Wm−2K−1 ;

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, .K., Mallick, A., Singh, D.B. et al. Experimental study of solar energy–based water purifier of single-slope type by incorporating a number of similar evacuated tubular collectors. Environ Sci Pollut Res 29, 6837–6856 (2022). https://doi.org/10.1007/s11356-021-16123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16123-3

Keywords

Navigation